Câu hỏi:

26/10/2025 74 Lưu

Biểu đồ dưới đây biểu diễn số học sinh giỏi hai môn Toán và Ngữ văn của các lớp 6A, 6B, 6C, 6D và 6E.

 Biểu đồ dưới đây biểu diễn số học sinh giỏi hai môn Toán và Ngữ văn của các lớp 6A, 6B, 6C, 6D và 6E. a) Số học sinh giỏi môn Toán của lớp nào nhiều nhất? Ít nhất? (ảnh 1)

a) Số học sinh giỏi môn Toán của lớp nào nhiều nhất? Ít nhất?

b) Lớp nào có nhiều học sinh giỏi môn Ngữ Văn hơn môn Toán?

c) Bạn Nam nói lớp 6D có sĩ số là 34 học sinh. Theo em, bạn Nam nói đúng không? Vì sao?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải:

a) Số học sinh giỏi môn Toán của lớp 6E nhiều nhất và của lớp 6A ít nhất.

b) Các lớp có số học sinh giỏi môn Ngữ Văn hơn môn Toán là 6B, 6D.

Lớp 6B có số học sinh giỏi môn Ngữ Văn hơn môn Toán là: \(13 - 10 = 3\) (học sinh).

Lớp 6D có số học sinh giỏi môn Ngữ Văn hơn môn Toán là: \(17 - 16 = 1\) (học sinh).

Vậy lớp 6B có nhiều học sinh giỏi môn Ngữ Văn hơn môn Toán.

c) Sĩ số của lớp 6D là: \(16 + 17 = 33\) (học sinh).

Vậy khẳng định của bạn Nam là sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Gọi \(x\) (quyển) là số sách mà thư viện cần lưu trữ \(\left( {x \in \mathbb{N}*,\,\,100 \le x \le 150} \right)\).

Nếu xếp thành bó 10 quyển thì thừa 2 quyển nên ta có \[\left( {x - 2} \right)\,\, \vdots \,\,10\] suy ra \[\left( {x - 2 + 10} \right)\,\, \vdots \,\,10\] hay \[\left( {x + 8} \right)\,\, \vdots \,\,10\].

Nếu xếp thành bó 12 quyển thì thừa 4 quyển nên ta có \(\left( {x - 4} \right)\,\, \vdots \,\,12\) suy ra \[\left( {x - 4 + 12} \right)\,\, \vdots \,\,12\] hay \[\left( {x + 8} \right)\,\, \vdots \,\,12\].

Nếu xếp thành bó 15 quyển thì thừa 7 quyển nên ta có \(\left( {x - 7} \right)\,\, \vdots \,\,15\) suy ra \[\left( {x - 7 + 15} \right)\,\, \vdots \,\,15\] hay \[\left( {x + 8} \right)\,\, \vdots \,\,15\].

Do đó \[\left( {x + 8} \right) \in \]BC\(\left( {10,\,\,12,\,\,15} \right)\).

Ta có: \(10 = 2 \cdot 5;\,\,\,\,\,12 = {2^2} \cdot 3;\,\,\,\,\,15 = 3 \cdot 5.\)

Suy ra BCNN\(\left( {10,\,\,12,\,\,15} \right) = {2^2} \cdot 3 \cdot 5 = 60\).

Nên BC\(\left( {10,\,\,12,\,\,15} \right) = \)B\[\left( {60} \right) = \left\{ {0;\,\,60;\,\,120;\,\,180;\,\,240;\,\,300;\,\,...} \right\}\]

Hay \[\left( {x + 8} \right) \in \left\{ {0;\,\,60;\,\,120;\,\,180;\,\,240;\,\,300;\,\,...} \right\}\]

Khi đó \[x \in \left\{ { - 8;\,\,52;\,\,112;\,\,172;\,\,232;\,\,292;\,\,...} \right\}\]

Mà \(100 \le x \le 150\) nên \(x = 112.\)

Vậy thư viện có 112 quyển sách cần lưu trữ.

Lời giải

Hướng dẫn giải

Gọi số phần quà có thể chia được là \(x\) (phần quà) \(\left( {x \in {\mathbb{N}^*}} \right)\)

Vì 300 thùng mì tôm, 240 thùng bánh mì và 420 lốc sữa được chia đều thành các phần quà nên ta có

\(300 \vdots x,\,\,240 \vdots x,\,\,420 \vdots x\).

Vì cần chia quà sao cho số phần quà nhận được là nhiều nhất nên \(x = \)ƯCLN\(\left( {300,\,\,240,\,\,420} \right)\).

Ta có: \(300 = {2^2} \cdot 3 \cdot {5^2};\,\,\,\,240 = {2^4} \cdot 3 \cdot 5;\,\,\,\,420 = {2^2} \cdot 3 \cdot 5 \cdot 7\).

Suy ra ƯCLN\(\left( {300,\,\,240,\,\,420} \right) = {2^2} \cdot 3 \cdot 5 = 60\).

Vậy chia được nhiều nhất thành 60 phần quà.