Quảng cáo
Trả lời:
c) Ta có: \[xy + 2x + 3y = 0\]
\(x\left( {y + 2} \right) + 3\left( {y + 2} \right) = 6\)
\(\left( {y + 2} \right)\left( {x + 3} \right) = 6\).
Với \(x \in \mathbb{Z},\) từ \(\left( {y + 2} \right)\left( {x + 3} \right) = 6\) ta có \(x + 3 \in \)Ư\(\left( 6 \right) = \left\{ {1;\, - 1;\,\,2;\, - 2;\,\,3;\, - 3;\,\,6;\, - 6} \right\}\)
Ta có bảng sau:
|
\(x + 3\) |
\(1\) |
\( - 1\) |
\(2\) |
\( - 2\) |
\(3\) |
\( - 3\) |
\(6\) |
\( - 6\) |
|
\(y + 2\) |
\(6\) |
\( - 6\) |
\(3\) |
\( - 3\) |
\(2\) |
\( - 2\) |
\(1\) |
\( - 1\) |
|
\(x \in \mathbb{Z}\) |
\( - 2\) |
\( - 4\) |
\( - 1\) |
\( - 5\) |
\(0\) |
\( - 6\) |
\(3\) |
\( - 9\) |
|
\(y \in \mathbb{Z}\) |
\(4\) |
\( - 8\) |
\(1\) |
\( - 5\) |
\(0\) |
\( - 4\) |
\( - 1\) |
\( - 3\) |
|
|
Thỏa mãn |
Thỏa mãn |
Thỏa mãn |
Thỏa mãn |
Thỏa mãn |
Thỏa mãn |
Thỏa mãn |
Thỏa mãn |
Vậy \(\left( {x;\,\,y} \right) \in \left\{ {\left( { - 2;\,\,4} \right);\,\,\left( { - 4;\,\, - 8} \right);\,\,\left( { - 1;\,\,1} \right);\,\,\left( { - 5;\,\, - 5} \right);\,\,\left( {0;\,\,0} \right);\,\,\left( { - 6;\,\, - 4} \right);\,\,\left( {3;\,\, - 1} \right);\,\,\left( { - 9;\,\, - 3} \right)} \right\}.\)
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Gọi chiều rộng hình chữ nhật nhỏ là \(b\), chiều dài hình chữ nhật nhỏ là \(a\,\,\left( {x,b > 0,\,\,{\rm{m}}} \right)\).
Chu vi của khu vườn hình chữ nhật là \(\left( {2a + a + 2b} \right) \cdot 2 = 76\)
Hay \(6a + 4b = 76\) (1)
Ta có \(2a = 5b\) nên \(6a = 15b\) (2)
Thay (2) vào (1) ta được \(15b + 4b = 76\) hay \(19b = 76\) nên \(b = 76:19\) suy ra \(b = 4.\)
Suy ra \(a = 10\,\,\left( {\rm{m}} \right)\).
Suy ra chiều dài ban đầu của khu vườn là \(2 \cdot 10 = 20{\rm{ }}\left( {\rm{m}} \right)\).
Chiều rộng ban đầu của khu vườn là: \(a + 2b = 10 + 2 \cdot 4 = 18{\rm{ }}\left( {\rm{m}} \right)\).
Diện tích ban đầu của khu vườn là: \(20 \cdot 18 = 360{\rm{ }}\left( {{{\rm{m}}^2}} \right)\).
Vậy diện tích khu vườn ban đầu là \(360{\rm{ }}{{\rm{m}}^2}.\)
Lời giải
Gọi ƯCLN\(\left( {5a + 2b,\,\,7a + 3b} \right) = d\,\,\left( {d \in {\mathbb{N}^*}} \right),\) suy ra \(\left( {5a + 2b} \right)\,\, \vdots \,\,d\) và \(\left( {7a + 3b} \right)\,\, \vdots \,\,d\).
⦁ Từ \(\left( {5a + 2b} \right)\,\, \vdots \,\,d\) ta có \(3\left( {5a + 2b} \right)\,\, \vdots \,\,d\) hay \(\left( {15a + 6b} \right)\,\, \vdots \,\,d\)
Từ \(\left( {7a + 3b} \right)\,\, \vdots \,\,d\) ta có \(2\left( {7a + 3b} \right)\,\, \vdots \,\,d\) hay \(\left( {14a + 6b} \right)\,\, \vdots \,\,d\)
Do đó \(\left[ {\left( {15a + 6b} \right) - \left( {14a + 6b} \right)} \right]\,\, \vdots \,\,d\) hay \(a\,\, \vdots \,\,d\) (1).
⦁ Từ \(\left( {5a + 2b} \right)\,\, \vdots \,\,d\) ta có \(7\left( {5a + 2b} \right)\,\, \vdots \,\,d\) hay \(\left( {35a + 14b} \right)\,\, \vdots \,\,d\)
Từ \(\left( {7a + 3b} \right)\,\, \vdots \,\,d\) ta có \(5\left( {7a + 3b} \right)\,\, \vdots \,\,d\) hay \(\left( {35a + 15b} \right)\,\, \vdots \,\,d\)
Do đó \(\left[ {\left( {35a + 15b} \right) - \left( {35a + 14b} \right)} \right]\,\, \vdots \,\,d\) hay \(b\,\, \vdots \,\,d\) (2).
⦁ Từ (1) và (2) suy ra \(d = \)ƯC\(\left( {a,\,\,b} \right)\).
Mà \(a\) và \(b\) là hai số nguyên tố cùng nhau nên ƯCLN\(\left( {a,\,\,b} \right) = 1.\) Do đó \(d = 1.\)
Vậy \(5a + 2b\) và \(7a + 3b\) là hai số nguyên số cùng nhau.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
