Một con robot xuất phát từ A đi thẳng đến B. Nó được lập trình cứ tiến 6 bước thì lùi lại 2 bước và để đến được B thì con robot đã thực hiện tổng cộng 126 bước. Hỏi khoảng cách từ A đến B dài bao nhiêu mét, biết mỗi bước đi của robot dài \(5{\rm{\;dm}}.\)
Một con robot xuất phát từ A đi thẳng đến B. Nó được lập trình cứ tiến 6 bước thì lùi lại 2 bước và để đến được B thì con robot đã thực hiện tổng cộng 126 bước. Hỏi khoảng cách từ A đến B dài bao nhiêu mét, biết mỗi bước đi của robot dài \(5{\rm{\;dm}}.\)
Quảng cáo
Trả lời:
Hướng dẫn giải
Vì robot được lập trình cứ tiến 6 bước thì lùi 2 bước nên mỗi lượt thực hiện một lập trình, robot đi được quãng đường là: \(6 \cdot 5 - 2 \cdot 5 = 20{\rm{\;dm}}{\rm{.}}\)
Như vậy, mỗi lần thực hiện một lập trình robot đi được quãng đường \(20{\rm{\;dm}}\) và bước tổng \(6 + 2 = 8\) bước.
Ta có: \(126:8 = 15\) dư 6.
Do đó để đến B thì robot đã thực hiện 15 lập trình và bước thêm 6 bước.
Khi đó, quãng đường robot đi được là: \(15 \cdot 20 + 6 \cdot 5 = 330{\rm{\;(dm)}}{\rm{.}}\)
Vậy khoảng cách từ A đến B dài 330 dm.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
c) Ta có: \[xy + 2x + 3y = 0\]
\(x\left( {y + 2} \right) + 3\left( {y + 2} \right) = 6\)
\(\left( {y + 2} \right)\left( {x + 3} \right) = 6\).
Với \(x \in \mathbb{Z},\) từ \(\left( {y + 2} \right)\left( {x + 3} \right) = 6\) ta có \(x + 3 \in \)Ư\(\left( 6 \right) = \left\{ {1;\, - 1;\,\,2;\, - 2;\,\,3;\, - 3;\,\,6;\, - 6} \right\}\)
Ta có bảng sau:
|
\(x + 3\) |
\(1\) |
\( - 1\) |
\(2\) |
\( - 2\) |
\(3\) |
\( - 3\) |
\(6\) |
\( - 6\) |
|
\(y + 2\) |
\(6\) |
\( - 6\) |
\(3\) |
\( - 3\) |
\(2\) |
\( - 2\) |
\(1\) |
\( - 1\) |
|
\(x \in \mathbb{Z}\) |
\( - 2\) |
\( - 4\) |
\( - 1\) |
\( - 5\) |
\(0\) |
\( - 6\) |
\(3\) |
\( - 9\) |
|
\(y \in \mathbb{Z}\) |
\(4\) |
\( - 8\) |
\(1\) |
\( - 5\) |
\(0\) |
\( - 4\) |
\( - 1\) |
\( - 3\) |
|
|
Thỏa mãn |
Thỏa mãn |
Thỏa mãn |
Thỏa mãn |
Thỏa mãn |
Thỏa mãn |
Thỏa mãn |
Thỏa mãn |
Vậy \(\left( {x;\,\,y} \right) \in \left\{ {\left( { - 2;\,\,4} \right);\,\,\left( { - 4;\,\, - 8} \right);\,\,\left( { - 1;\,\,1} \right);\,\,\left( { - 5;\,\, - 5} \right);\,\,\left( {0;\,\,0} \right);\,\,\left( { - 6;\,\, - 4} \right);\,\,\left( {3;\,\, - 1} \right);\,\,\left( { - 9;\,\, - 3} \right)} \right\}.\)
Lời giải
Hướng dẫn giải
Gọi chiều rộng hình chữ nhật nhỏ là \(b\), chiều dài hình chữ nhật nhỏ là \(a\,\,\left( {x,b > 0,\,\,{\rm{m}}} \right)\).
Chu vi của khu vườn hình chữ nhật là \(\left( {2a + a + 2b} \right) \cdot 2 = 76\)
Hay \(6a + 4b = 76\) (1)
Ta có \(2a = 5b\) nên \(6a = 15b\) (2)
Thay (2) vào (1) ta được \(15b + 4b = 76\) hay \(19b = 76\) nên \(b = 76:19\) suy ra \(b = 4.\)
Suy ra \(a = 10\,\,\left( {\rm{m}} \right)\).
Suy ra chiều dài ban đầu của khu vườn là \(2 \cdot 10 = 20{\rm{ }}\left( {\rm{m}} \right)\).
Chiều rộng ban đầu của khu vườn là: \(a + 2b = 10 + 2 \cdot 4 = 18{\rm{ }}\left( {\rm{m}} \right)\).
Diện tích ban đầu của khu vườn là: \(20 \cdot 18 = 360{\rm{ }}\left( {{{\rm{m}}^2}} \right)\).
Vậy diện tích khu vườn ban đầu là \(360{\rm{ }}{{\rm{m}}^2}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
