Khi máu di chuyển từ tim qua các động mạch chính rồi đến các mao mạch và quay trở lại qua các tĩnh mạch, huyết áp tâm thu ( tức là áp lực của máu lên động mạch khi tim co bóp) liên tục giảm xuống. Giả sử một người có huyết áp tâm thu P ( được tính bằng mmHg) được cho bởi hàm số: \(\) \(P(t) = \frac{{25{t^2} + 125}}{{{t^2} + 1}},0 \le t \le 10\)Trong đó t là thời gian được tính bằng giây. Tốc độ thay đổi của huyết áp sau 8 giây kể từ khi máu rời tim giảm bao nhiêu mmHg?
Câu hỏi trong đề: Bộ 20 đề thi Giữa kì 1 Toán 12 có đáp án !!
Quảng cáo
Trả lời:
Tốc độ thay đổi của huyết áp sau t giây là:
\(P'(t) = \frac{{50t.({t^2} + 1) - (25{t^2} + 125).2t}}{{{t^2} + 1}} = \frac{{ - 200t}}{{{{({t^2} + 1)}^2}}} \le 0,\forall 0 \le t \le 10\)
\( \Rightarrow P(t)\)nghịch biến trên đoạn \(\left[ {0;10} \right]\)
Ta có: \(P'(8) = \frac{{ - 200.8}}{{{{({8^2} + 1)}^2}}} = \frac{{ - 64}}{{169}}\)
Tốc độ thay đổi của huyết áp sau 8 giây kể từ khi máu rời tim là giảm \(\frac{{64}}{{169}} \approx 0,38\) (mmHg).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
|
a) |
S |
b) |
S |
c) |
Đ |
d) |
S |
(b) Sai: \(\left| {\vec u\left| = \right|\vec v} \right| \Leftrightarrow \sqrt {13} = \sqrt {{{\left( {m - 1} \right)}^2} + 4{m^2} + 9} \Leftrightarrow 5{m^2} - 2m - 3 = 0 \Leftrightarrow m = 1\) hoặc \(m = - \frac{3}{5}\).
(c) Đúng: Khi \(m = 1\) thì \(\vec v = \left( {0;2;3} \right)\). Suy ra \(\vec u = \vec v\).
(d) Sai: \(\vec u \bot \vec u \Leftrightarrow 4m + 9 = 0 \Leftrightarrow m = - \frac{9}{4}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

