Câu hỏi:

30/10/2025 15 Lưu

Một con lắc đơn gồm quả cầu có khối lượng 400 (g) và sợi dây treo không dãn có trọng lượng không đáng kể, chiều dài 0,1 (m) được treo thẳng đứng ở điểm A. Biết con lắc đơn dao động điều hoà, tại vị trí có li độ góc 0,075 (rad) thì có vận tốc \(0,075\sqrt 3 \) (m/s). Cho gia tốc trọng trường 10 (m/s2). Cơ năng của dao động là bao nhiêu? (Đơn vị: J).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cơ năng của dao động được tính bởi công thức:

\[{\rm{W}} = \frac{{mg\ell }}{2}{\alpha ^2} + \frac{{m{v^2}}}{2}\]\[ = \frac{{0,4.10.0,1}}{2}.0,{075^2} + 0,4.\frac{{{{\left( {0,075\sqrt 3 } \right)}^2}}}{2} = 4,{5.10^{ - 3}}\left( J \right)\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Tần số góc: \(\omega  = \frac{{2\pi }}{T} = \pi \left( {rad/s} \right)\)

Tại thời điểm ban đầu: \(\left\{ \begin{array}{l}v = 2\pi \sqrt 3 \,cm/s\\a = 2{\pi ^2}cm/{s^2}\end{array} \right. \Rightarrow \left\{ \begin{array}{l} - \pi A\sin \varphi  = 2\pi \sqrt 3 \\ - {\pi ^2}A\cos \varphi  = 2{\pi ^2}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\sin \varphi  = \frac{{ - 2\sqrt 3 }}{A}\left( { < 0} \right)\\\cos \varphi  = \frac{{ - 2}}{A}\end{array} \right.\)

Chia vế: \(\tan \varphi  = \sqrt 3  \Rightarrow \varphi  = \frac{{ - 2\pi }}{3}\) (vì \(\sin \varphi  < 0\))\( \Rightarrow A = \frac{{ - 2\sqrt 3 }}{{\sin \varphi }} = 4\,\left( {cm} \right).\)

Phương trình vận tốc:

 \(v =  - 4\pi \sin \left( {\pi t - \frac{{2\pi }}{3}} \right) =  - 4\pi \cos \left( {\pi t - \frac{{7\pi }}{6}} \right) = 4\pi \cos \left( {\pi t - \frac{\pi }{6}} \right)\,cm/s.\)

Câu 2

A. \[x = {\rm{A}}cos\left( {\omega t{\rm{ + }}\frac{\pi }{{12}}} \right){\rm{ }}cm\].
B. \[x = {\rm{A}}cos\left( {\omega t{\rm{ + }}\frac{\pi }{6}} \right){\rm{ }}cm\].
C. \[x = {\rm{A}}cos\left( {\omega t{\rm{ }} + {\rm{ }}\frac{{5\pi }}{6}} \right){\rm{ }}cm\].
D. \[x = {\rm{A}}cos\left( {\omega t{\rm{ }} + {\rm{ }}\frac{{2\pi }}{5}} \right){\rm{ }}cm\].

Lời giải

Đáp án đúng là B

Ta có: \(\left\{ \begin{array}{l}x = A\cos \left( {\omega t + \varphi } \right)\\v =  - \omega A\sin \left( {\omega t + \varphi } \right)\end{array} \right.\)

Câu 3

A. Cơ năng của con lắc tỉ lệ với biên độ dao động.
B. Cơ năng của con lắc tỉ lệ với bình phương của biên độ dao động.
C. Cơ năng của con lắc được bảo toàn nếu bỏ qua mọi ma sát.
D. Động năng của con lắc biến thiên tuần hoàn theo thời gian.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[mg\ell \left( {1{\rm{ }} - {\rm{ }}sin\alpha } \right).\;\]
B. \[mg\ell \left( {1{\rm{ }} - {\rm{ }}cos\alpha } \right).\;\]
C. \[mg\ell \left( {{\rm{cos}}\alpha {\rm{ }} - {\rm{ }}sin\alpha } \right).\;\]
D. \[mg\ell \left( {sin\alpha - {\rm{cos}}\alpha {\rm{ }}} \right).\;\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP