Câu hỏi:

30/10/2025 35 Lưu

Gốc thời gian được chọn vào lúc nào nếu phương trình dao động điều hòa có dạng \(x = A\cos \left( {\omega t + \frac{\pi }{2}} \right)\)?

A. Lúc chất điểm có li độ x = – A.
B. Lúc chất điểm qua vị trí cân bằng theo chiều dương quy ước.
C. Lúc chất điểm có li độ x = + A.
D. Lúc chất điểm qua vị trí cân bằng theo chiều âm quy ước.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là D

Pha ban đầu là \( + \frac{\pi }{2}\) nên gốc thời gian được chọn vào lúc chất điểm qua vị trí cân bằng theo chiều âm quy ước.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A.\(\Delta \varphi = 2n\pi \) với \(n = 0, \pm 1, \pm 2\)     
B. \(\Delta \varphi = \left( {2n + \frac{1}{5}} \right)\pi \) với \(n = 0, \pm 1, \pm 2, \ldots \) 
C. \(\Delta \varphi = (2n + 1)\pi \) với \[n = 0{\rm{,}} + 1, \pm 2,{\rm{ }}...\]                
D. \(\Delta \varphi = \left( {2n + \frac{5}{4}} \right)\pi \) với \(n = 0, \pm 1, \pm 2, \ldots \)

Lời giải

Đáp án đúng là C

Nếu hai dao động ngược pha thì\(\Delta \varphi  = (2n + 1)\pi \) với\[n = 0, + 1, \pm 2,{\rm{ }}...\]

Lời giải

Đáp án đúng là A

Áp dụng công thức:  

\(\left\{ \begin{array}{l}\frac{{0,{{48}^2}}}{{{\omega ^4}}} + \frac{{0,{{16}^2}}}{{{\omega ^2}}} = {A^2}\\\frac{{0,{{64}^2}}}{{{\omega ^4}}} + \frac{{0,{{12}^2}}}{{{\omega ^2}}} = {A^2}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}A = 0,05\left( m \right)\\\omega  = 4\left( {rad/s} \right)\end{array} \right.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Cơ năng giảm dần theo thời gian.
B. Lực cản môi trường càng lớn, dao động tắt dần càng nhanh.
C. Biên độ giảm dần theo thời gian.
D. Vận tốc giảm dần theo thời gian.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP