Một vật dao động điều hòa có chu kì 2 s, biên độ 10 cm. Khi vật cách vị trí cân bằng 5 cm, tốc độ của nó bằng
Quảng cáo
Trả lời:
Đáp án đúng là A
Từ công thức: \({x^2} + \frac{{{v^2}}}{{{\omega ^2}}} = {A^2}\) suy ra:
\(\left| v \right| = \omega \sqrt {{A^2} - {x^2}} = \frac{{2\pi }}{T}\sqrt {{A^2} - {x^2}} = \frac{{2\pi }}{2}\sqrt {{{10}^2} - {5^2}} \approx 27,21\left( {cm/s} \right)\)
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chu kì dao động của con lắc được tính bởi công thức: \(T = 2\pi \sqrt {\frac{m}{k}} \)
Ta có: \[\frac{{{T_2}}}{{{T_1}}} = \frac{{2\pi \sqrt {\frac{{{m_2}}}{k}} }}{{2\pi \sqrt {\frac{{{m_1}}}{k}} }} = \sqrt {\frac{{{m_2}}}{{{m_1}}}} \Rightarrow \frac{1}{2} = \sqrt {\frac{{{m_2}}}{{200}}} \Rightarrow {m_2} = 50\left( {gam} \right)\]
Câu 2
Lời giải
Đáp án đúng là A
\[{W_d} = W - {W_t} = \frac{{k{A^2}}}{2} - \frac{{k{x^2}}}{2} = \frac{{100}}{2}\left( {0,{1^2} - 0,{{07}^2}} \right) = 0,255\left( J \right)\]
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.