PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 4
Một con lắc lò xo gồm lò xo nhẹ và vật nhỏ dao động theo phương ngang với tần số góc 10 rad/s. Biết rằng khi động năng bằng thế năng (mốc ở vị trí cân bằng của vật) bằng nhau thì vận tốc vật có độ lớn bằng 0,6 m/s. Biên độ dao động của con lắc là bao nhiêu? (Đơn vị: cm).
                                    
                                                                                                                        PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 4
Một con lắc lò xo gồm lò xo nhẹ và vật nhỏ dao động theo phương ngang với tần số góc 10 rad/s. Biết rằng khi động năng bằng thế năng (mốc ở vị trí cân bằng của vật) bằng nhau thì vận tốc vật có độ lớn bằng 0,6 m/s. Biên độ dao động của con lắc là bao nhiêu? (Đơn vị: cm).
Quảng cáo
Trả lời:
 Giải bởi Vietjack
                                        Giải bởi Vietjack
                                    Khi động năng và thế năng bằng nhau, ta có: \[\frac{1}{2}m{v^2} = \frac{1}{2}k{x^2} \to {x^2} = \frac{m}{k}{v^2} = \frac{{{v^2}}}{{{\omega ^2}}}\]
Biên độ dao động: \[A = \sqrt {{x^2} + \frac{{{v^2}}}{{{\omega ^2}}}} = \sqrt {\frac{{{v^2}}}{{{\omega ^2}}} + \frac{{{v^2}}}{{{\omega ^2}}}} = \frac{v}{\omega }\sqrt 2 = \frac{{60}}{{10}}\sqrt 2 = 6\sqrt 2 \left( {cm} \right)\]
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là C
Ta có: \[{A^2} = x_1^2 + \frac{{v_1^2}}{{{\omega ^2}}} = x_2^2 + \frac{{v_2^2}}{{{\omega ^2}}} \to \omega = \sqrt {\frac{{v_1^2 - v_2^2}}{{x_2^2 - x_1^2}}} = \sqrt {\frac{{{{20}^2} - {{\left( {20\sqrt 3 } \right)}^2}}}{{{{\left( {8\sqrt 2 } \right)}^2} - {{\left( {8\sqrt 3 } \right)}^2}}}} = 2,5\left( {rad/s} \right)\]
\[A = \sqrt {x_1^2 + \frac{{v_1^2}}{{{\omega ^2}}}} = 16cm \to {v_{\max }} = A\omega = 40\left( {cm/s} \right)\]
Lời giải
Ta có: \[\omega = \sqrt {\frac{g}{{\Delta l}}} = \sqrt {\frac{{10}}{{0,05}}} = 10\sqrt 2 \left( {rad/s} \right)\]
\[A = \frac{{{v_{\max }}}}{\omega } = \frac{{30\sqrt 2 }}{{10\sqrt 2 }} = 3\left( {cm} \right)\]
Từ đó: \[{v_0} = \pm \omega \sqrt {{A^2} - {x^2}} = \pm 10\sqrt 2 \sqrt {{3^2} - {1^2}} = 40\left( {cm/s} \right)\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
 Nhắn tin Zalo
 Nhắn tin Zalo