Câu hỏi:

30/10/2025 22 Lưu

Một con lắc lò xo treo thẳng đứng tại nơi \[g = 10m/{s^2}\]. Vật đang cân bằng thì lò xo giãn 5 cm. Kéo vật xuống dưới vị trí cân bằng 1 cm rồi truyền cho nó một vận tốc ban đầu \[{v_0}\] hướng thẳng lên thì vật dao động điều hòa với vận tốc cực đại \[30\sqrt 2 cm/s\]. Vận tốc \[{v_0}\] có độ lớn là bao nhiêu? (Đơn vị: cm/s).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có: \[\omega  = \sqrt {\frac{g}{{\Delta l}}}  = \sqrt {\frac{{10}}{{0,05}}}  = 10\sqrt 2 \left( {rad/s} \right)\]

        \[A = \frac{{{v_{\max }}}}{\omega } = \frac{{30\sqrt 2 }}{{10\sqrt 2 }} = 3\left( {cm} \right)\]

Từ đó: \[{v_0} =  \pm \omega \sqrt {{A^2} - {x^2}}  =  \pm 10\sqrt 2 \sqrt {{3^2} - {1^2}}  = 40\left( {cm/s} \right)\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là C

Ta có: \[{A^2} = x_1^2 + \frac{{v_1^2}}{{{\omega ^2}}} = x_2^2 + \frac{{v_2^2}}{{{\omega ^2}}} \to \omega  = \sqrt {\frac{{v_1^2 - v_2^2}}{{x_2^2 - x_1^2}}}  = \sqrt {\frac{{{{20}^2} - {{\left( {20\sqrt 3 } \right)}^2}}}{{{{\left( {8\sqrt 2 } \right)}^2} - {{\left( {8\sqrt 3 } \right)}^2}}}}  = 2,5\left( {rad/s} \right)\]

\[A = \sqrt {x_1^2 + \frac{{v_1^2}}{{{\omega ^2}}}}  = 16cm \to {v_{\max }} = A\omega  = 40\left( {cm/s} \right)\]

Lời giải

Khi động năng và thế năng bằng nhau, ta có: \[\frac{1}{2}m{v^2} = \frac{1}{2}k{x^2} \to {x^2} = \frac{m}{k}{v^2} = \frac{{{v^2}}}{{{\omega ^2}}}\]

Biên độ dao động: \[A = \sqrt {{x^2} + \frac{{{v^2}}}{{{\omega ^2}}}}  = \sqrt {\frac{{{v^2}}}{{{\omega ^2}}} + \frac{{{v^2}}}{{{\omega ^2}}}}  = \frac{v}{\omega }\sqrt 2  = \frac{{60}}{{10}}\sqrt 2  = 6\sqrt 2 \left( {cm} \right)\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[\gamma \left( {\beta \alpha + \gamma } \right) = 1\].
B. \[\beta \left( {\alpha + \gamma } \right) = 1\].
C. \[\alpha \left( {\beta + \gamma } \right) = 1\].
D. \[\gamma \left( {\alpha + \beta \gamma } \right) = 1\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP