Câu hỏi:

04/11/2025 50 Lưu

Biết gia tốc cực đại và vận tốc cực đại của một dao động điều hòa là \[{a_0}\] và \[{v_0}\]. Biên độ dao động là:

A.

\[\frac{1}{{{a_0}{v_0}}}\].

B.

\[{a_0}{v_0}\].

C.

\[\frac{{v_0^2}}{{{a_0}}}\].

D.

\[\frac{{a_0^2}}{{{v_0}}}\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là C

Ta có: \[\left\{ {\begin{array}{*{20}{c}}{{v_0} = A\omega }\\{{a_0} = A{\omega ^2}}\end{array}} \right. \to \left\{ {\begin{array}{*{20}{c}}{v_0^2 = {A^2}{\omega ^2}}\\{{a_0} = A{\omega ^2}}\end{array}} \right.\]. Từ đó: \[A = \frac{{v_0^2}}{{{a_0}}}\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là D

Ta có: v=x'=20πsin4πt.

Khi t = 5 s thì \[v = - 20\pi \sin 20\pi = 0\left( {cm/s} \right).\]

Lời giải

Ta có: \[\omega = \sqrt {\frac{g}{{\Delta l}}} = \sqrt {\frac{{10}}{{0,05}}} = 10\sqrt 2 \left( {rad/s} \right)\]

\[A = \frac{{{v_{\max }}}}{\omega } = \frac{{30\sqrt 2 }}{{10\sqrt 2 }} = 3\left( {cm} \right)\]

Từ đó: \[{v_0} = \pm \omega \sqrt {{A^2} - {x^2}} = \pm 10\sqrt 2 \sqrt {{3^2} - {1^2}} = 40\left( {cm/s} \right)\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[\gamma \left( {\beta \alpha + \gamma } \right) = 1\].

B. \[\beta \left( {\alpha + \gamma } \right) = 1\].

C. \[\alpha \left( {\beta + \gamma } \right) = 1\].

D. \[\gamma \left( {\alpha + \beta \gamma } \right) = 1\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP