Một con lắc đơn dao động điều hòa với chu kỳ T. Biết rằng nếu giảm chiều dài dây một lượng \[\Delta \ell = 1,2\,\,m\] thì chu kỳ dao động chỉ còn một nửa. Chiều dài dây treo là bao nhiêu? (Đơn vị: m).
Quảng cáo
Trả lời:
Chu kỳ của con lắc đơn có chiều dài \[\ell \] là: \[T = 2\pi \sqrt {\frac{\ell }{g}} \]
Chu kỳ của con lắc đơn có chiều dài \[\ell - \Delta \ell \] là:
Từ đó:
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
5 cm/s.
\[20\pi cm/s\].
\[ - 20\pi cm/s\].
0 cm/s.
Lời giải
Đáp án đúng là D
Ta có:
Khi t = 5 s thì \[v = - 20\pi \sin 20\pi = 0\left( {cm/s} \right).\]
Lời giải
Ta có: \[v = \frac{{{v_{\max }}}}{2} = \frac{{A\omega }}{2}\]
Động năng: \[{W_d} = \frac{1}{2}m{v^2} = \frac{1}{2}m{\left( {\frac{{A\omega }}{2}} \right)^2} = \frac{1}{8}m{\omega ^2}{A^2} = \frac{1}{8}k{A^2}\]
Thế năng: \[{W_t} = W - {W_d} = \frac{1}{2}k{A^2} - \frac{1}{8}k{A^2} = \frac{3}{8}k{A^2}\]
Từ đó: \[\frac{{{W_t}}}{{{W_d}}} = 3\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
\[T = \frac{1}{{2\pi }}\sqrt {\frac{m}{k}} \].
\[T = \frac{1}{{2\pi }}\sqrt {\frac{k}{m}} \].
\[T = 2\pi \sqrt {\frac{k}{m}} \].
\[T = 2\pi \sqrt {\frac{m}{k}} \].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Ngược pha với nhau.
Cùng pha với nhau.
Vuông pha với nhau.
Lệch pha một góc \[\frac{\pi }{4}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
\[\alpha _0^2 = {\alpha ^2} + g\ell {v^2}\].
\[\alpha _0^2 = {\alpha ^2} + \frac{{{v^2}}}{{g\ell }}\].
\[\alpha _0^2 = {\alpha ^2} + \frac{{{v^2}}}{{{\omega ^2}}}\].
\[\alpha _0^2 = {\alpha ^2} + \frac{{{v^2}g}}{\ell }\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.