Trong các câu sau đây, câu nào là đúng?
A. \(\frac{{ - 4}}{5} < \frac{{ - 1}}{3} < 0 < 4 < 2,25\)
B. \(\frac{{ - 1}}{3} < \frac{{ - 4}}{5} < 0 < 2,25 < 4\)
C. \[0 < \frac{{ - 1}}{3} < \frac{{ - 4}}{5} < 2,25 < 4\]
D. \(\frac{{ - 4}}{5} < \frac{{ - 1}}{3} < 0 < 2,25 < 4\).
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 1 Toán 7 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Đáp án:
Đáp án đúng là: D
So sánh các số hữu tỉ âm, ta có: \(\frac{{ - 4}}{5} < \frac{{ - 1}}{3}\).
So sánh các số hữu tỉ dương, ta có: \(2,25 < 4\).
Do đó \(\frac{{ - 4}}{5} < \frac{{ - 1}}{3} < 0 < 2,25 < 4\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Anh, KHTN lớp 7 (chương trình mới) ( 60.000₫ )
- Trọng tâm Văn, Sử, Địa, GDCD lớp 7 (chương trình mới) ( 60.000₫ )
- Trọng tâm Văn - Sử - Địa - GDCD và Toán - Anh - KHTN lớp 7 (chương trình mới) ( 120.000₫ )
- Trọng tâm Văn - Sử - Địa - GDCD và Toán - Anh - KHTN lớp 8 (chương trình mới) ( 120.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Học sinh vẽ hình đúng số đo góc.
Góc kề bù với góc \(xOz\) là \(\widehat {yOz}\) và \(\widehat {xOn}\).
b) Ta có \(\widehat {xOz} + \widehat {yOz} = 180^\circ \) (hai góc kề bù)
Suy ra \(\widehat {yOz} = 180^\circ - \widehat {xOz} = 180^\circ - 130^\circ = 50^\circ \)
Lại có \(\widehat {xOn} = \widehat {yOz} = 50^\circ \) (hai góc đối đỉnh)
Do tia \(Ox\) nằm giữa hai tia \(Om,\,\,On\) và \(\widehat {xOn} = \widehat {xOm} = 50^\circ \) nên tia \(Ox\) là tia phân giác của góc \(mOn\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
\(\widehat {xOx'}\)
\(\widehat {x'Oy}\)
\(\widehat {yOy'}\)
\(\widehat {xOy}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

