Số hữu tỉ nào sau đây không nằm giữa: \[\frac{1}{{ - 4}}\] và \[\frac{3}{4}\]?
\(0\)
\(\frac{{ - 7}}{8}\)
\(\frac{3}{8}\)
\(\frac{5}{8}\).
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 1 Toán 7 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: B
Ta có \[\frac{1}{{ - 4}} = \frac{{ - 2}}{8}\] và \[\frac{3}{4} = \frac{6}{8}\].
Mà \( - 7 < - 2 < 0 < 3 < 5 < 6\) nên \[\frac{{ - 7}}{8} < \frac{{ - 2}}{8} < \frac{0}{8} < \frac{3}{8} < \frac{5}{8} < \frac{6}{8}\].
Hay \[\frac{{ - 7}}{8} < \frac{1}{{ - 4}} < 0 < \frac{3}{8} < \frac{5}{8} < \frac{3}{4}\].
Vậy số hữu tỉ không nằm giữa \[\frac{1}{{ - 4}}\] và \[\frac{3}{4}\] là \(\frac{{ - 7}}{8}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Các góc kề bù với \(\widehat {aOc}\) là: \(\widehat {aOd},\,\,\widehat {bOc}\).
b) Vì \(\widehat {aOc}\) và \(\widehat {aOd}\) là hai góc kề bù nên
\(\widehat {aOc} + \widehat {aOd} = 180^\circ \)
Suy ra \(\widehat {aOd} = 180^\circ - \widehat {aOc} = 180^\circ - 65^\circ = 115^\circ \).
• \(\widehat {aOd} = \widehat {bOc} = 115^\circ \) (hai góc đối đỉnh);
• \(\widehat {aOc} = \widehat {bOd} = 65^\circ \) (hai góc đối đỉnh).
Vậy \(\widehat {aOd} = 115^\circ ,\,\,\widehat {bOc} = 115^\circ ,\,\,\widehat {bOd} = 65^\circ \).
Lời giải
Đáp án đúng là: B
• Hai góc kề bù thì có tổng số đo bằng \[180^\circ \] nên (I) đúng.
• Tổng số đo hai góc đã cho là \(100^\circ + 100^\circ = 200^\circ \ne 180^\circ \), nên (II) sai.
• Hai góc có tổng số đo bằng \(180^\circ \) là hai góc bù nhau nhưng chưa chắc ở vị trí kề nhau nên hai góc có tổng số đo bằng \(180^\circ \) chưa chắc là hai góc kề bù. Do đó (III) sai.
Vậy chỉ có ý (I) đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Mặt phẳng \(ABCD\)
Mặt phẳng \(BCC'B'\)
Mặt phẳng \(ADD'A'\)
Mặt phẳng \(ABC'D'\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
