Hãy chọn câu sai trong các câu sau
Hãy chọn câu sai trong các câu sau
A. Tứ giác lồi là tứ giác luôn nằm trong một nửa mặt phẳng có bờ là đường thẳng chứa bất kỳ cạnh nào của tứ giác;
B. Tổng các góc của một tứ giác bằng \[{\rm{180^\circ }}\];
C. Tổng các góc của một tứ giác bằng \[360^\circ \];
Quảng cáo
Trả lời:
Đáp án đúng là: B
Định lý: Tổng các góc của một tứ giác bằng \[360^\circ \] nên B sai.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. Hai cạnh kề nhau: \(AB\), \[BC\];
B. Hai cạnh đối nhau: \[BC\], \[DA\];
Lời giải
Đáp án đúng là: C
Tứ giác \(ABCD\) có các cặp góc đối nhau là \(\widehat A\) và \(\widehat C\), \(\widehat B\) và \(\widehat D\); còn \(\widehat A\) và \(\widehat B\), \(\widehat C\) và \(\widehat D\) là hai cặp góc kề nhau nên C sai.
Lời giải
Ta có: \(A = - {x^2} + 2xy - 4{y^2} + 2x + 10y - 3.\)
Suy ra \( - A = {x^2} - 2xy + 4{y^2} - 2x - 10y + 3\)
\( = {x^2} - 2x\left( {y + 1} \right) + {\left( {y + 1} \right)^2} + 4{y^2} - 10y + 3 - {\left( {y + 1} \right)^2}\)
\( = \left[ {{x^2} - 2x\left( {y + 1} \right) + {{\left( {y + 1} \right)}^2}} \right] + 3{y^2} - 12y + 2\)
\[ = {\left[ {x - \left( {y + 1} \right)} \right]^2} + 3\left( {{y^2} - 4y + 4} \right) - 10\]
\[ = {\left( {x - y - 1} \right)^2} + 3{\left( {y - 2} \right)^2} - 10\]
Do đó \[A = - {\left( {x - y - 1} \right)^2} - 3{\left( {y - 2} \right)^2} + 10\]
Nhận xét: \[ - {\left( {x - y - 1} \right)^2} \le 0;\,\,\, - 3{\left( {y - 2} \right)^2} \le 0\] với mọi \(x,y\)
Suy ra \[A = - {\left( {x - y - 1} \right)^2} - 3{\left( {y - 2} \right)^2} + 10 \le 10\]
Dấu “=” xảy ra khi và chỉ khi \[\left\{ \begin{array}{l} - {\left( {x - y - 1} \right)^2} = 0\\ - 3{\left( {y - 2} \right)^2} = 0\end{array} \right.\], tức là \[\left\{ \begin{array}{l}x - y - 1 = 0\\y - 2 = 0\end{array} \right.\], hay \[\left\{ \begin{array}{l}x = 3\\y = 2\end{array} \right.\]
Vậy giá trị lớn nhất của biểu thức \(A\) là 10 khi \(\left( {x;y} \right) = \left( {3;2} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. bình phương của một tổng;
B. bình phương của một hiệu;
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.