Trong các khẳng định sau, khẳng định nào là đúng?
A. Tứ giác có hai cạnh đối song song là hình bình hành
B. Tứ giác có hai cạnh đối bằng nhau là hình bình hành;
C. Tứ giác có hai góc đối bằng nhau là hình bình hành;
Quảng cáo
Trả lời:
Đáp án đúng là: D
Dấu hiệu nhận biết: Tứ giác có các cạnh đối song song là hình bình hành.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. Hai cạnh kề nhau: \(AB\), \[BC\];
B. Hai cạnh đối nhau: \[BC\], \[DA\];
Lời giải
Đáp án đúng là: C
Tứ giác \(ABCD\) có các cặp góc đối nhau là \(\widehat A\) và \(\widehat C\), \(\widehat B\) và \(\widehat D\); còn \(\widehat A\) và \(\widehat B\), \(\widehat C\) và \(\widehat D\) là hai cặp góc kề nhau nên C sai.
Lời giải
Ta có: \(A = - {x^2} + 2xy - 4{y^2} + 2x + 10y - 3.\)
Suy ra \( - A = {x^2} - 2xy + 4{y^2} - 2x - 10y + 3\)
\( = {x^2} - 2x\left( {y + 1} \right) + {\left( {y + 1} \right)^2} + 4{y^2} - 10y + 3 - {\left( {y + 1} \right)^2}\)
\( = \left[ {{x^2} - 2x\left( {y + 1} \right) + {{\left( {y + 1} \right)}^2}} \right] + 3{y^2} - 12y + 2\)
\[ = {\left[ {x - \left( {y + 1} \right)} \right]^2} + 3\left( {{y^2} - 4y + 4} \right) - 10\]
\[ = {\left( {x - y - 1} \right)^2} + 3{\left( {y - 2} \right)^2} - 10\]
Do đó \[A = - {\left( {x - y - 1} \right)^2} - 3{\left( {y - 2} \right)^2} + 10\]
Nhận xét: \[ - {\left( {x - y - 1} \right)^2} \le 0;\,\,\, - 3{\left( {y - 2} \right)^2} \le 0\] với mọi \(x,y\)
Suy ra \[A = - {\left( {x - y - 1} \right)^2} - 3{\left( {y - 2} \right)^2} + 10 \le 10\]
Dấu “=” xảy ra khi và chỉ khi \[\left\{ \begin{array}{l} - {\left( {x - y - 1} \right)^2} = 0\\ - 3{\left( {y - 2} \right)^2} = 0\end{array} \right.\], tức là \[\left\{ \begin{array}{l}x - y - 1 = 0\\y - 2 = 0\end{array} \right.\], hay \[\left\{ \begin{array}{l}x = 3\\y = 2\end{array} \right.\]
Vậy giá trị lớn nhất của biểu thức \(A\) là 10 khi \(\left( {x;y} \right) = \left( {3;2} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. bình phương của một tổng;
B. bình phương của một hiệu;
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.