Cho \(\Delta ABC\) vuông tại \(A.\) Lấy hai điểm \(M,\;\,N\) lần lượt thuộc các cạnh \(AB,\;\,AC\) sao cho \(AB = 3AN,\;\,BC = 3MN.\) Khi đó:
Quảng cáo
Trả lời:
Đáp án đúng là: B

Vì \(\Delta ABC\) và \(\Delta ANM\) có: \(\frac{{AB}}{{AN}} = \frac{{BC}}{{NM}}\;\,\left( { = \frac{1}{3}} \right),\;\,\widehat {BAC} = \widehat {NAM} = 90^\circ \) nên
Do đó, \(\widehat {AMN} = \widehat C,\;\,\widehat {ANM} = \widehat B.\) Suy ra, chọn đáp án B.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
\(\Delta ADC\) và \(\Delta AEB\) có: \(\widehat {DAC} = \widehat {EAB} = 90^\circ ,\;\,\frac{{AD}}{{AE}} = \frac{{AC}}{{AB}}\;\,\left( {{\rm{do}}\;\,\frac{2}{4} = \frac{1}{2}} \right)\) nên
Câu 2
Lời giải
Đáp án đúng là: C
\(\Delta ABC\) và \(\Delta AMN\) có: \(\widehat {MNA} = \widehat {ACB} = 90^\circ ,\;\,\widehat A\) chung. Do đó,
Suy ra \(\frac{{BC}}{{NM}} = \frac{{AC}}{{AN}} = \frac{{40}}{4} = 10.\) Do đó, \(BC = 10MN = 10 \cdot 3 = 30\;\,\left( {\rm{m}} \right).\)
Vậy chiều cao của ngọn tháp bằng \(30\;\,{\rm{m}}{\rm{.}}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


