10 Bài tập Trường hợp đồng dạng thứ nhất của tam giác (có lời giải)
46 người thi tuần này 4.6 208 lượt thi 10 câu hỏi 45 phút
🔥 Đề thi HOT:
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 1)
Bộ 10 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 2)
Đề kiểm tra Cuối kì 2 Toán 8 CTST có đáp án (Đề 1)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
Dạng 1: Bài luyện tập 1 dạng 1: Tính có đáp án
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
Cho tam giác ABC có AB = 3 cm, AC = 5 cm, BC = 7 cm. Tam giác A'B'C' có A'B' = 6 cm, B'C' = 14 cm, A'C' = 10 cm. Khi đó tam giác BAC đồng dạng với:
Cho tam giác ABC có AB = 3 cm, AC = 5 cm, BC = 7 cm. Tam giác A'B'C' có A'B' = 6 cm, B'C' = 14 cm, A'C' = 10 cm. Khi đó tam giác BAC đồng dạng với:
Lời giải
Hướng dẫn giải:
Đáp án đúng là: B
Ta có .
Suy ra .
Xét hai tam giác BAC và B'A'C' có .
Suy ra ΔBAC ᔕ ΔB'A'C' (c – c – c).
Câu 2
Cho tam giác ABC vuông tại A có BC = 10 cm, AC = 8 cm và tam giác DEF vuông tại D có EF = 5 cm, DF = 4 cm. Tỉ số chu vi của tam giác ABC và tam giác DEF là:
Cho tam giác ABC vuông tại A có BC = 10 cm, AC = 8 cm và tam giác DEF vuông tại D có EF = 5 cm, DF = 4 cm. Tỉ số chu vi của tam giác ABC và tam giác DEF là:
Lời giải

Lời giải
Hướng dẫn giải:
Đáp án đúng là: C
Xét hai tam giác ABC và A'B'C' có:
Do đó, ΔABC ᔕ ΔA'B'C' (ch – cgv).
Suy ra .
Suy ra .
Câu 4
Cho tam giác ABC đồng dạng với tam giác DEF. Biết AB = 6 cm, BC = 10 cm, AC = 14 cm và chu vi tam giác DEF bằng 45 cm. Độ dài các cạnh của tam giác DEF là:
Cho tam giác ABC đồng dạng với tam giác DEF. Biết AB = 6 cm, BC = 10 cm, AC = 14 cm và chu vi tam giác DEF bằng 45 cm. Độ dài các cạnh của tam giác DEF là:
Lời giải
Hướng dẫn giải:
Đáp án đúng là: A
Chu vi tam giác ABC là:
6 + 10 + 14 = 30 (cm).
Vì ΔABC ᔕ ΔDEF nên .
Suy ra .
Do đó,
, , .
Câu 5
Cho tam giác ABC có AB = 4 cm, BC = 5 cm, AC = 6 cm và tam giác MNP có MN = 2 cm, NP = 3 cm, MP = 2,5 cm. Chọn đáp án đúng.
Lời giải
Hướng dẫn giải:
Đáp án đúng là: D
Ta có .
Suy ra .
Xét hai tam giác ABC và NPM có .
Suy ra ΔABC ᔕ ΔNMP (c – c – c).
Câu 6
Tứ giác ABCD có AB = 3 cm, BC = 10 cm, CD = 12 cm, AD = 5 cm và BD = 6 cm. Tứ giác ABCD là hình gì?
Tứ giác ABCD có AB = 3 cm, BC = 10 cm, CD = 12 cm, AD = 5 cm và BD = 6 cm. Tứ giác ABCD là hình gì?
Lời giải
Hướng dẫn giải:
Đáp án đúng là: C

Ta có .
Suy ra .
Xét hai tam giác ABD và BDC có .
Suy ra ΔABD ᔕ ΔBDC (c – c – c).
Suy ra .
Mà hai góc này ở vị trí so le trong nên AB // DC.
Do đó, tứ giác ABCD là hình thang.
Câu 7
Cho tam giác ABC và một điểm O nằm trong tam giác đó. Gọi M, N, P lần lượt là trung điểm của các đoạn OA, OB, OC. Khi đó tam giác MNP đồng dạng với tam giác nào?
Cho tam giác ABC và một điểm O nằm trong tam giác đó. Gọi M, N, P lần lượt là trung điểm của các đoạn OA, OB, OC. Khi đó tam giác MNP đồng dạng với tam giác nào?
Lời giải
Hướng dẫn giải:
Đáp án đúng là: A

Xét tam giác OAB có:
M là trung điểm OA, N là trung điểm OB.
Suy ra MN là đường trung bình của tam giác OAB.
Suy ra hay (1).
Xét tam giác OAC có:
M là trung điểm OA, P là trung điểm OC.
Suy ra MP là đường trung bình của tam giác OAC.
Suy ra hay (2).
Xét tam giác OBC có:
N là trung điểm OB, P là trung điểm OC.
Suy ra NP là đường trung bình của tam giác OBC.
Suy ra hay (3).
Từ (1), (2), (3) suy ra .
Xét hai tam giác ABC và MNP có .
Suy ra ΔABC ᔕ ΔMNP (c – c – c).
Câu 8
Cho tam giác ABC đồng dạng với tam giác DEF. Biết BC = 24,3 cm, CA = 32,4 cm, AB = 16,2 cm và AB – DE = 10 cm. Tính độ dài các cạnh của tam giác DEF.
Cho tam giác ABC đồng dạng với tam giác DEF. Biết BC = 24,3 cm, CA = 32,4 cm, AB = 16,2 cm và AB – DE = 10 cm. Tính độ dài các cạnh của tam giác DEF.
Lời giải
Hướng dẫn giải:
Đáp án đúng là: B
Vì ΔABC ᔕ ΔDEF nên .
Mà AB – DE = 10 cm nên DE = AB – 10 = 16,2 – 10 = 6,2 (cm).
Suy ra .
Suy ra .
Câu 9
Cho hình thang vuông ABCD tại A và D, AB = 6 cm, CD = 12 cm, AD = 17 cm. Trên cạnh AD lấy E, biết AE = 8 cm, EB = 10 cm, EC = 15 cm. Khi đó bằng
Cho hình thang vuông ABCD tại A và D, AB = 6 cm, CD = 12 cm, AD = 17 cm. Trên cạnh AD lấy E, biết AE = 8 cm, EB = 10 cm, EC = 15 cm. Khi đó bằng
Lời giải
Hướng dẫn giải:
Đáp án đúng là: C

Ta có AD = AE + ED nên ED = AD – AE = 17 – 8 = 9 (cm).
Có .
Suy ra .
Xét hai tam giác ABE và DEC có:
Suy ra ΔABE ᔕ ΔDEC (ch – cgv).
Suy ra .
Mà (do tam giác DEC vuông tại D) nên .
Suy ra .
Câu 10
Cho tam giác ABC vuông tại A có AB = 3 cm, BC = 5 cm. Cho tam giác A'B'C' đồng dạng với tam giác ABC có cạnh nhỏ nhất là 1,5 cm. Độ dài cạnh B'C' là
Cho tam giác ABC vuông tại A có AB = 3 cm, BC = 5 cm. Cho tam giác A'B'C' đồng dạng với tam giác ABC có cạnh nhỏ nhất là 1,5 cm. Độ dài cạnh B'C' là
Lời giải
Hướng dẫn giải:
Đáp án đúng là: C
Vì tam giác ABC vuông tại A nên theo định lí Pythagore ta có:
AB2 + AC2 = BC2.
Suy ra AC2 = BC2 – AB2 = 52 – 32 = 16.
Suy ra AC = 4 (cm).
Vì ΔABC ᔕ ΔA'B'C' nên .
Vì trong tam giác ABC cạnh AB nhỏ nhất nên trong tam giác A'B'C' cạnh A'B' nhỏ nhất
Suy ra A'B' = 1,5 cm.
Do đó, .
Suy ra (cm).
42 Đánh giá
50%
40%
0%
0%
0%