CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(A = 7 + {7^2} + {7^3} + ... + {7^{119}} + {7^{120}}\)

\( = \left( {{7^1} + {7^2} + {7^3}} \right) + \left( {{7^4} + {7^5} + {7^6}} \right) + ... + \left( {{7^{118}} + {7^{119}} + {7^{120}}} \right)\)

\( = 7\left( {1 + 7 + {7^2}} \right) + {7^4}\left( {1 + 7 + {7^2}} \right) + ... + {7^{118}}\left( {1 + 7 + {7^2}} \right)\)

\( = 7\,\,.\,\,57 + {7^4}\,\,.\,\,57 + ... + {7^{118}}\,\,.\,\,57\)\( = 57\left( {7 + {7^4} + ... + {7^{118}}} \right)\).

Vì \(57\,\, \vdots \,\,57\) nên \(57\left( {7 + {7^4} + ... + {7^{118}}} \right)\,\, \vdots \,\,57\).

Vậy biểu thức \[A\] chia cho hết cho 57.

Lời giải

Gọi \[x\] (túi) là số túi bi chia được nhiều nhất \((x \in \mathbb{N}*)\).

Vì số bi đỏ và vàng mỗi túi là đều nhau nên \(42\,\, \vdots \,\,x\) và \(30\,\, \vdots \,\,x\).

Do đó \[x\] là ƯC\[\left( {42,\,\,30} \right)\].

Mặt khác \[x\] lớn nhất (chia vào nhiều túi nhất) nên \[x\] là ƯCLN\[\left( {42,\,\,30} \right)\].

Ta có: \[42 = 2\,\,.\,\,3\,\,.\,\,7\,;{\rm{ }}30 = 2\,\,.\,\,3\,\,.\,\,5\].

ƯCLN\[\left( {42,\,\,30} \right) = 2\,\,.\,\,3 = 6\].

Do đó \[x = 6\]. Khi đó:

Số bi màu đỏ mỗi túi là: \[42:6 = 7\] (viên).

Số bi màu vàng mỗi túi là: \[30:6 = 5\] (viên).

Vậy Hà có thể chia nhiều nhất vào 6 túi. Khi đó, mỗi túi có 7 viên bi đỏ và 5 viên bi vàng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP