Cho \(A = 7 + {7^2} + {7^3} + ... + {7^{119}} + {7^{120}}\). Chứng minh rằng biểu thức \[A\] chia cho hết cho 57.
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 1 Toán 6 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Ta có \(A = 7 + {7^2} + {7^3} + ... + {7^{119}} + {7^{120}}\)
\( = \left( {{7^1} + {7^2} + {7^3}} \right) + \left( {{7^4} + {7^5} + {7^6}} \right) + ... + \left( {{7^{118}} + {7^{119}} + {7^{120}}} \right)\)
\( = 7\left( {1 + 7 + {7^2}} \right) + {7^4}\left( {1 + 7 + {7^2}} \right) + ... + {7^{118}}\left( {1 + 7 + {7^2}} \right)\)
\( = 7\,\,.\,\,57 + {7^4}\,\,.\,\,57 + ... + {7^{118}}\,\,.\,\,57\)\( = 57\left( {7 + {7^4} + ... + {7^{118}}} \right)\).
Vì \(57\,\, \vdots \,\,57\) nên \(57\left( {7 + {7^4} + ... + {7^{118}}} \right)\,\, \vdots \,\,57\).
Vậy biểu thức \[A\] chia cho hết cho 57.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \[x\] (túi) là số túi bi chia được nhiều nhất \((x \in \mathbb{N}*)\).
Vì số bi đỏ và vàng mỗi túi là đều nhau nên \(42\,\, \vdots \,\,x\) và \(30\,\, \vdots \,\,x\).
Do đó \[x\] là ƯC\[\left( {42,\,\,30} \right)\].
Mặt khác \[x\] lớn nhất (chia vào nhiều túi nhất) nên \[x\] là ƯCLN\[\left( {42,\,\,30} \right)\].
Ta có: \[42 = 2\,\,.\,\,3\,\,.\,\,7\,;{\rm{ }}30 = 2\,\,.\,\,3\,\,.\,\,5\].
ƯCLN\[\left( {42,\,\,30} \right) = 2\,\,.\,\,3 = 6\].
Do đó \[x = 6\]. Khi đó:
Số bi màu đỏ mỗi túi là: \[42:6 = 7\] (viên).
Số bi màu vàng mỗi túi là: \[30:6 = 5\] (viên).
Vậy Hà có thể chia nhiều nhất vào 6 túi. Khi đó, mỗi túi có 7 viên bi đỏ và 5 viên bi vàng.
Lời giải

a) Dễ thấy trong hình bình hành \[AMCN\] chiều cao tương ứng của cạnh \[AN\] là \[MN\] và \[MN = AB = 10\] m.
Do đó diện tích hình bình hành \[AMCN\] là: \[6\,\,.{\rm{ }}10 = 60\] (m2)
Diện tích hình chữ nhật \[ABCD\] là: \[10\,\,.{\rm{ }}12 = 120\] (m2)
Phần diện tích còn lại trồng cỏ là: \[120 - 60 = 60\] (m2)
b) Số tiền công cần để chi trả trồng hoa là:
\[50{\rm{ }}000\,\,.{\rm{ }}60 = 3{\rm{ }}000{\rm{ }}000\] (đồng)
Số tiền công cần để chi trả trồng cỏ là:
\[40{\rm{ }}000\,\,.{\rm{ }}60 = 2{\rm{ }}400{\rm{ }}000\] (đồng)
Số tiền công cần để chi trả trồng hoa và cỏ là:
\[3{\rm{ }}000{\rm{ }}000 + 2{\rm{ }}400{\rm{ }}000 = 5{\rm{ }}400{\rm{ }}000\] (đồng).
Vậy số tiền công cần để chi trả trồng hoa và cỏ là \[5{\rm{ }}400{\rm{ }}000\] đồng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
