CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Khi \(m = - 1\) thì \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {{x^2} - 1 - 2} \right) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {{x^2} - 3} \right) = 1\).

b) \(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = \mathop {\lim }\limits_{x \to 3} \sqrt {x + 7} = \sqrt {10} \).

c) \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \sqrt {x + 7} = 3\); \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {{x^2} - 1 + 2m} \right) = 3 + 2m\); \(f\left( 2 \right) = 3\).

Để tồn tại \(\mathop {\lim }\limits_{x \to 2} f\left( x \right)\) thì \(3 + 2m = 3 \Leftrightarrow m = 0\).

d) \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \sqrt {x + 7} = 3\).

Đáp án: a) Đúng; b) Sai; c) Sai; d) Đúng.

Lời giải

Hàm số \(f\left( x \right)\) xác định trên \(\mathbb{R}\) liên tục tại \(x = 1\) \( \Leftrightarrow \mathop {\lim }\limits_{x \to 1} f\left( x \right) = f\left( 1 \right) = 5\). Chọn D.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A.

\(\lim {\left( {\frac{{ - 2024}}{{2025}}} \right)^n} = 0\).

B.

\(\lim {\left( {\sqrt 3 } \right)^n} = + \infty \).

C.

\(\lim {\left( {\frac{5}{3}} \right)^n} = 0\).

D.

\(\lim {\left( {\frac{1}{3}} \right)^n} = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP