Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}{x^2} - 1 + 2m\;{\rm{khi}}\;x < 2\\\sqrt {x + 7} \;\;\;\;\;\;\;{\rm{khi}}\;x \ge 2\end{array} \right.\) (\(m\)là tham số).
a) Khi \(m = - 1\) thì \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = 1\).
b) \(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = 5\).
c) Tồn tại \(\mathop {\lim }\limits_{x \to 2} f\left( x \right)\) khi \(m = - 3\).
d) \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = 3\).
Quảng cáo
Trả lời:
a) Khi \(m = - 1\) thì \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {{x^2} - 1 - 2} \right) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {{x^2} - 3} \right) = 1\).
b) \(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = \mathop {\lim }\limits_{x \to 3} \sqrt {x + 7} = \sqrt {10} \).
c) \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \sqrt {x + 7} = 3\); \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {{x^2} - 1 + 2m} \right) = 3 + 2m\); \(f\left( 2 \right) = 3\).
Để tồn tại \(\mathop {\lim }\limits_{x \to 2} f\left( x \right)\) thì \(3 + 2m = 3 \Leftrightarrow m = 0\).
d) \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \sqrt {x + 7} = 3\).
Đáp án: a) Đúng; b) Sai; c) Sai; d) Đúng.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
\(\lim \left( {\frac{1}{{2\sqrt 1 + 1\sqrt 2 }} + \frac{1}{{3\sqrt 2 + 2\sqrt 3 }} + ... + \frac{1}{{\left( {n + 1} \right)\sqrt n + n\sqrt {n + 1} }}} \right)\)
\( = \lim \left( {\frac{{2\sqrt 1 - 1\sqrt 2 }}{{2 \cdot 1}} + \frac{{3\sqrt 2 - 2\sqrt 3 }}{{3 \cdot 2}} + ... + \frac{{\left( {n + 1} \right)\sqrt n - n\sqrt {n + 1} }}{{\left( {n + 1} \right) \cdot n}}} \right)\)
\( = \lim \left( {1 - \frac{1}{{\sqrt 2 }} + \frac{1}{{\sqrt 2 }} - \frac{1}{{\sqrt 3 }} + ... + \frac{1}{{\sqrt n }} - \frac{1}{{\sqrt {n + 1} }}} \right)\)
\( = \lim \left( {1 - \frac{1}{{\sqrt {n + 1} }}} \right) = 1\).
Trả lời: 1.
Câu 2
\(y = \cos x\).
\(y = \frac{x}{{{x^2} + x + 2}}\).
\(y = \frac{x}{{x + 1}}\).
\(y = {x^2} + 6x + 20\).
Lời giải
Hàm số \(y = \frac{x}{{x + 1}}\) liên tục trên \(\mathbb{R}\backslash \left\{ { - 1} \right\}\). Chọn C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
\(f\left( 1 \right) = - 5\).
\(f\left( 1 \right) = 1\).
\(f\left( 1 \right) = - 1\).
\(f\left( 1 \right) = 5\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
\( - \infty \).
\(\frac{1}{2}\).
\( + \infty \).
\(3\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.