Bạn An thả một quả bóng cao su từ độ cao 12 mét so với mặt đất. Mỗi lần chạm đất quả bóng lại nảy lên độ cao bằng \(\frac{2}{3}\) độ cao của lần rơi trước. Giả sử quả bóng luôn chuyển động vuông góc với mặt đất. Tính tổng quãng đường của quả bóng mà bạn An thả đã di chuyển (từ lúc thả bóng cho tới khi quả bóng không nảy nữa)? (tham khảo hình vẽ bên dưới).

Quảng cáo
Trả lời:
Ta coi độ cao nảy lên lần thứ nhất là \({u_1} \Rightarrow {u_1} = 12 \cdot \frac{2}{3} = 8\).
Khi đó \({u_2} = \frac{2}{3}{u_1};{u_3} = \frac{2}{3}{u_2};....\)
Đây là cấp số nhân lùi vô hạn với \({u_1} = 8;q = \frac{2}{3}\).
Khi đó tổng quãng đường quả bóng di chuyển là
\(S = 12 + 2{u_1} + 2{u_2} + ... + 2{u_n} + ...\)\( = 12 + 2\left( {{u_1} + {u_2} + ... + {u_n} + ...} \right) = 12 + 2 \cdot \frac{{{u_1}}}{{1 - q}}\)\( = 12 + 2 \cdot \frac{8}{{1 - \frac{2}{3}}} = 60\).
Trả lời: 60.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
\(\mathbb{R}\).
\(\left( { - 3; + \infty } \right)\).
\(\left( { - \infty ;2} \right) \cup \left( {2; + \infty } \right)\).
\(\left( { - \infty ;3} \right)\).
Lời giải
Tập xác định của hàm số là \(D = \mathbb{R}\backslash \left\{ 2 \right\}\).
Do đó hàm số liên tục trên khoảng \(\left( { - \infty ;2} \right) \cup \left( {2; + \infty } \right)\). Chọn C.
Câu 2
\({x_0} = 4\).
\({x_0} = 0\).
\({x_0} = 2\).
\({x_0} = 3\).
Lời giải
Hàm số xác định khi \(x \ge 2\). Do đó hàm số gián đoạn tại điểm \({x_0} = 0\). Chọn B.
Câu 3
\(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \frac{1}{2}\).
\(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \frac{1}{4}\).
Hàm số \(f\left( x \right)\) liên tục tại \(x = 2\).
\(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \frac{3}{4}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
\(f\left( 8 \right) = - \frac{1}{5}\).
\(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \frac{1}{3}\).
\(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = \frac{1}{6}\).
Biết \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = a,\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + x + 2} - x} \right) = b\). Khi đó \(3a + 4b = 2\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.