Thực hiện phép chia \(\left( {2{x^4}y - 6{x^2}{y^7}} \right):\left( {2{x^2}} \right)\) ta được đa thức \[a{x^2}y + b{y^7}\](\(a,\,\,b\) là hằng số). Khi đó \(a + b\) bằng
Quảng cáo
Trả lời:
Đáp án đúng là: C
Ta có \(\left( {2{x^4}y - 6{x^2}{y^7}} \right):\left( {2{x^2}} \right) = {x^2}y - 3{y^7}\)
Khi đó \(a = 1;\,\,b = - 3\).
Do đó \(a + b = - 2\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \[\frac{A}{B} = \frac{{A\,.\,M}}{{B\,.\,M}},\,\,M\] là một đa thức khác đa thức \[0\].
B. \[\frac{A}{B} = \frac{{A + M}}{{B + M}}\].
D. \[\frac{A}{B} = \frac{{A\,.\,M}}{{B\,.\,M}}\].
Lời giải
Đáp án đúng là: A
Áp dụng tính chất cơ bản của phân thức, ta có:
\[\frac{A}{B} = \frac{{A\,.\,M}}{{B\,.\,M}},\,\,M\] là một đa thức khác đa thức \[0\].
Lời giải
a) Điều kiện xác định của biểu thức \[E\] là \(x \ne 0;\,\,x + 2 \ne 0;\,\,x - 2 \ne 0\).
Khi đó \(x \ne 0;\,\,x \ne \pm \,2.\)
Vậy điều kiện xác định của biểu thức \[E\] là \(x \ne 0;\,\,x \ne \pm \,2.\)
b) Với \(x \ne 0;\,\,x \ne \pm \,2\), ta có
\(E = \left( {\frac{1}{{x + 2}} + \frac{1}{{x - 2}}} \right) \cdot \frac{{{x^2} + 4x + 4}}{{2x}}\)
\[ = \left[ {\frac{{x - 2}}{{\left( {x + 2} \right)\left( {x - 2} \right)}} + \frac{{x + 2}}{{\left( {x + 2} \right)\left( {x - 2} \right)}}} \right] \cdot \frac{{{{\left( {x + 2} \right)}^2}}}{{2x}}\]
\[ = \frac{{x - 2 + x + 2}}{{\left( {x + 2} \right)\left( {x - 2} \right)}} \cdot \frac{{{{\left( {x + 2} \right)}^2}}}{{2x}}\]\[ = \frac{{2x}}{{x - 2}} \cdot \frac{{x + 2}}{{2x}} = \frac{{x + 2}}{{x - 2}}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \[SA\].
B. \[SE\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
