Câu hỏi:

19/11/2025 0 Lưu

Chọn phương án đúng nhất để điền vào các chỗ trống sau.

“Hiệu hai lập phương bằng tích của ... hai biểu thức với bình phương thiếu của ... hai biểu thức đó.”

A. tổng – hiệu.       
B. tổng – tổng.         
C. hiệu – tổng.      
D. hiệu – hiệu.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Hiệu hai lập phương bằng tích của hiệu hai biểu thức với bình phương thiếu của tổng hai biểu thức đó.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Với \(x \ne 0\,;\,\,x \ne  - 1\), ta có:

\(P = \frac{{{x^2}}}{{x + 1}} + \frac{{2(x - 1)}}{x} + \frac{{x + 2}}{{{x^2} + x}}\)

\( = \frac{{{x^3}}}{{x\left( {x + 1} \right)}} + \frac{{2(x - 1)\left( {x + 1} \right)}}{{x\left( {x + 1} \right)}} + \frac{{x + 2}}{{x\left( {x + 1} \right)}}\)

\( = \frac{{{x^3} + 2\left( {{x^2} - 1} \right) + x + 2}}{{x\left( {x + 1} \right)}}\)\[ = \frac{{{x^3} + 2{x^2} - 2 + x + 2}}{{x\left( {x + 1} \right)}}\]

\[ = \frac{{{x^3} + 2{x^2} + x}}{{x\left( {x + 1} \right)}} = \frac{{x{{\left( {x + 1} \right)}^2}}}{{x\left( {x + 1} \right)}} = x + 1\].

b) Với \(x = 1\) (TMĐK), thay vào biểu thức \(P\), ta được:

\[P = x + 1 = 1 + 1 = 2\].

Vậy tại \(x = 1\) thì giá trị của biểu thức \(P\) bằng 2.

Lời giải

Ta có \(A = 2x\left( {x - 3} \right) = 2{x^2} - 6x\)

\[ = 2\left( {{x^2} - 2 \cdot \frac{3}{2}x + \frac{9}{4}} \right) - \frac{9}{2}\]

\[ = 2{\left( {x - \frac{3}{2}} \right)^2} - \frac{9}{2}\].

Vì \({\left( {x - \frac{3}{2}} \right)^2} \ge 0\) với mọi \(x \in \mathbb{R}\) nên \(A = 2{\left( {x - \frac{3}{2}} \right)^2} - \frac{9}{2} \ge  - \frac{9}{2}\).

Vậy giá trị nhỏ nhất của \[A\] bằng \( - \frac{9}{2}\) khi và chỉ khi \(x - \frac{3}{2} = 0\) hay \(x = \frac{3}{2}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[AB + C\].       
B. \[B + AC\].           
C. \[AB + BC\].        
D. \[AB + AC\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP