Câu hỏi:

19/11/2025 6 Lưu

Tìm cân nặng trung bình của học sinh lớp 11B với mẫu số liệu cho trong bảng bên dưới đây.

Media VietJack

A. \(56,71\).     
B. \(52,81\).      

C. \(53,15\).

D. \(51,81\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Trong mỗi khoảng cân nặng, giá trị đại diện là trung bình cộng của giá trị hai đầu mút nên ta có bảng sau:

Media VietJack

Tổng số học sinh là \(n = 42\). Cân nặng trung bình của học sinh lớp 11B là

\(\overline x = \frac{{10 \cdot 43 + 7 \cdot 48 + 16 \cdot 53 + 4 \cdot 58 + 2 \cdot 63 + 3 \cdot 68}}{{42}} \approx 51,81\,{\rm{(kg)}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a)

Media VietJack

\(M,\,N\) lần lượt là trung điểm của \(A'B'\)\(AB\) nên \(MN\) là đường trung bình của hình thang \(ABB'A'\). Suy ra \(MN\,{\rm{//}}\,AA'\)\(MN\, = \,AA'\) (do \(ABB'A'\) là hình bình hành).

Ta có \[MN{\rm{ // }}AA',\,AA'{\rm{ // }}CC' \Rightarrow MN{\rm{ // }}CC'\].

Lại có \(AA' = CC'\) (tính chất hình lăng trụ), mà \(MN\, = \,AA'\) nên \[MN = CC'\].

Do đó, tứ giác \[MNCC'\] là hình bình hành. Suy ra \[CN{\rm{ // }}MC'.\]

Ta có \[\left\{ \begin{array}{l}CN{\rm{ // }}MC'\\MC' \subset \left( {AMC'} \right)\end{array} \right. \Rightarrow CN{\rm{ // }}\left( {AMC'} \right).\]

Mặt khác ta chứng minh được \[AN{\rm{ // }}B'M,AN = B'M\] nên tứ giác \[ANB'M\] là hình bình hành. Suy ra \[NB'{\rm{ // }}MA.\]

Ta có \[\left\{ \begin{array}{l}NB'{\rm{ // }}MA\\MA \subset \left( {AMC'} \right)\end{array} \right. \Rightarrow NB'{\rm{ // }}\left( {AMC'} \right).\]

Lại có \[\left\{ \begin{array}{l}CN{\rm{ // }}\left( {AMC'} \right)\\NB'{\rm{ // }}\left( {AMC'} \right)\\CN,NB' \subset \left( {CNB'} \right)\\CN \cap NB' = \left\{ N \right\}\end{array} \right. \Rightarrow \left( {AMC'} \right){\rm{ // }}\left( {CNB'} \right).\]

\[CB' \subset \left( {CNB'} \right).\,\,\,{\rm{Suy}}\,\,{\rm{ra}}\,\,\,CB'\,\,{\rm{//}}\,\left( {AMC'} \right)\]

b)

Media VietJack

Trong mặt phẳng \(\left( {ABB'A'} \right)\), kẻ đường thẳng qua \(N\) song song với \(AB'\), cắt \(BB'\) tại \(E\).

Trong mặt phẳng \(\left( {ABC'} \right)\), kẻ đường thẳng qua \(N\) song song với \(AC'\), cắt \(BC'\) tại \(Q\).

Khi đó, mặt phẳng \(\left( P \right)\) chính là mặt phẳng \(\left( {NQE} \right)\).

\(E \in BB'\) nên \(E \in \left( {BB'C'} \right)\); vì \(Q \in BC'\) nên \(Q \in \left( {BB'C'} \right)\). Do đó, \(EQ \subset \left( {BB'C'} \right)\).

Vậy \[\left( {NQE} \right) \cap \left( {BB'C'} \right)\,\, = \,\,EQ\] hay \[\left( P \right) \cap \left( {BB'C'} \right)\,\, = \,\,EQ\]

Câu 2

A. \(\left( {BDD'B'} \right)\;{\rm{//}}\;\left( {ACC'A'} \right)\).       
B. \(\left( {AA'D'D} \right)\;{\rm{//}}\;\left( {BCC'B'} \right)\).
C. \(\left( {ABCD} \right)\;{\rm{//}}\;\left( {A'B'C'D'} \right)\).       
D. \(\left( {ABB'A'} \right)\;{\rm{//}}\;\left( {CDD'C'} \right)\).

Lời giải

Đáp án đúng là: A

\(ABCD.A'B'C'D'\) là hình hộp nên các mặt phẳng đối diện song song:

\(\left( {AA'D'D} \right)\;{\rm{//}}\;\left( {BCC'B'} \right)\); \(\left( {ABCD} \right)\;{\rm{//}}\;\left( {A'B'C'D'} \right)\); \(\left( {ABB'A'} \right)\;{\rm{//}}\;\left( {CDD'C'} \right)\).

Do hai đường thẳng \(AC\)\(BD\) cắt nhau mà \(AC \subset \left( {ACC'A'} \right)\)\(BD \subset \left( {BDD'B'} \right)\) nên hai mặt phẳng \(\left( {BDD'B'} \right)\)\(\left( {ACC'A'} \right)\) cắt nhau, vậy đáp án A sai.

Câu 3

A. \(f\left( x \right) = \frac{{2{x^2} + 6x + 1}}{{x + 2}}\). 
B. \(f\left( x \right) = \frac{{x + 1}}{{x - 2}}\).         
C. \(f\left( x \right) = \frac{{{x^2} + x + 1}}{{x - 2}}\). 
D. \(f\left( x \right) = \frac{{3{x^2} - x - 2}}{{{x^2} - 4}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Qua 3 điểm không thẳng hàng có duy nhất một mặt phẳng.
B. Qua 3 điểm phân biệt bất kì có duy nhất một mặt phẳng.
C. Qua 2 điểm phân biệt có duy nhất một mặt phẳng.
D. Qua 4 điểm phân biệt bất kì có duy nhất một mặt phẳng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP