Câu hỏi:

19/11/2025 46 Lưu

Tìm cân nặng trung bình của học sinh lớp 11B với mẫu số liệu cho trong bảng bên dưới đây.

Media VietJack

A. \(56,71\).     
B. \(52,81\).      

C. \(53,15\).

D. \(51,81\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Trong mỗi khoảng cân nặng, giá trị đại diện là trung bình cộng của giá trị hai đầu mút nên ta có bảng sau:

Media VietJack

Tổng số học sinh là \(n = 42\). Cân nặng trung bình của học sinh lớp 11B là

\(\overline x = \frac{{10 \cdot 43 + 7 \cdot 48 + 16 \cdot 53 + 4 \cdot 58 + 2 \cdot 63 + 3 \cdot 68}}{{42}} \approx 51,81\,{\rm{(kg)}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(f\left( x \right) = \frac{{2{x^2} + 6x + 1}}{{x + 2}}\). 
B. \(f\left( x \right) = \frac{{x + 1}}{{x - 2}}\).         
C. \(f\left( x \right) = \frac{{{x^2} + x + 1}}{{x - 2}}\). 
D. \(f\left( x \right) = \frac{{3{x^2} - x - 2}}{{{x^2} - 4}}\).

Lời giải

Đáp án đúng là: A

Hàm số \(f\left( x \right) = \frac{{2{x^2} + 6x + 1}}{{x + 2}}\) là hàm phân thức hữu tỉ xác định tại \(x = 2\) nên nó liên tục tại \(x = 2\).

Câu 2

A. 1.          
B. 2.     
C. 0.     
D. 3.

Lời giải

Đáp án đúng là: C

Ta có, theo hệ quả \(\mathop {\lim }\limits_{n \to + \infty } \left( {\frac{1}{n}} \right) = 0 \Rightarrow \mathop {\lim }\limits_{n \to + \infty } \left( {\frac{k}{n}} \right) = 0,\forall k \in \mathbb{R}\).

Do đó, \(\mathop {\lim }\limits_{n \to + \infty } \left( {\frac{2}{n}} \right) = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[x = 1.\]   
B. \[y = 1.\]     
C. \[x = 2.\]           
D. \[y = 3.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \( + \infty \).    
B. \(\frac{1}{2}\).  
C. \(1\).         
D. \(2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP