Trong các hàm số sau, hàm số nào là hàm số lẻ?
\(f\left( x \right) = 1 - \cos 3x.\)
\(f\left( x \right) = {\sin ^2}x.\)
\(f\left( x \right) = x + \tan x.\)
\(f\left( x \right) = \cos 2x.\)
Quảng cáo
Trả lời:
Đáp án đúng là: C
Xét hàm số \(f\left( x \right) = x + \tan x.\)
Tập xác định của hàm số là \(D = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi |k \in \mathbb{Z}} \right\}.\)
Do đó, nếu \(x \in D\) thì \( - x \in D.\)
Ta có:
\(f\left( { - x} \right) = - x + \tan \left( { - x} \right) = - x - \tan x = - \left( {x + \tan x} \right) = - f\left( x \right),\forall x \in D.\)
Vậy \(f\left( x \right) = x + \tan x\) là hàm số lẻ.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
\(4.\)
\[6.\]
\(3.\)
\(2.\)
Lời giải
Đáp án đúng là: A
Cách 1: Vì 4 điểm đã cho là không đồng phẳng nên tạo thành 1 tứ diện.
Mà tứ diện có 4 mặt phẳng nên ta xác định được 4 mặt phẳng phân biệt từ các điểm đã cho.
Cách 2: Vì 4 điểm đã cho không đồng phẳng nên chọn 3 điểm bất kì cho ta 1 mặt phẳng
Do đó số mặt phẳng được xác định từ 4 điểm đã cho là \(C_4^3 = 4\).
Câu 2
Mặt phẳng \(\left( {DCEF} \right).\)
Mặt phẳng \(\left( {ADF} \right).\)
Mặt phẳng \[\left( {BCE} \right).\]
Cả ba phương án A, B, C.
Lời giải
Đáp án đúng là: D

Vì \(O\) và \(O'\) lần lượt là tâm hình bình hành \(ABCD\) và \(ABEF\) nên \(O\) và \(O'\) lần lượt là trung điểm của \(BD\) và \(FB.\)
Xét \(\Delta BDF\) có: \(OO'\) là đường trung bình \( \Rightarrow OO'{\rm{//}}DF.\)
Mà \(DF \subset \left( {DCEF} \right);\,\,DF \subset \left( {ADF} \right);\)
\( \Rightarrow OO'{\rm{//}}\left( {DCEF} \right);\,\,OO'{\rm{//}}\left( {ADF} \right).\)
Vì \(ABCD\) và\(ABEF\) là hình bình hành nên \(CD = AB = EF;\,\,CD{\rm{//}}AB{\rm{//EF}}{\rm{.}}\)
\( \Rightarrow CDFE\) là hình bình hành nên \(DF{\rm{//}}CE.\)
Mà \(DF{\rm{//OO'}}\) nên \(OO'{\rm{//}}CE.\)
Hơn nữa \(CE \subset \left( {BCE} \right) \Rightarrow OO'{\rm{//}}\left( {BCE} \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
\(9,4.\)
\(10.\)
\(9,5.\)
\(11.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
\( - 0,7.\)
\(\frac{4}{3}.\)
\( - \sqrt 2 .\)
\(\frac{{\sqrt 5 }}{2}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
\[\left[ \begin{array}{l}x = \alpha + k2\pi \\x = \pi - \alpha + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\].
\[\left[ \begin{array}{l}x = \alpha + k\pi \\x = \pi - \alpha + k\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\].
\[x = \pm \alpha + k2\pi \,\left( {k \in \mathbb{Z}} \right).\]
\[x = \alpha + k\pi \,\left( {k \in \mathbb{Z}} \right).\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
