Câu hỏi:

21/11/2025 5 Lưu

(1,5 điểm) Tìm \[x\], biết:

        a) \[{x^2} - 6x = 0\];   b) \[3x\left( {x - 1} \right) + x - 1 = 0\];   c) x32x2+x=0.                                    

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

a) \[{x^2} - 6x = 0\]

\[x\left( {x - 6} \right) = 0\]

\[x = 0\] hoặc \[x - 6 = 0\]

\[x = 0\] hoặc \[x = 6\]

Vậy \(x \in \left\{ {0;\,\,6} \right\}\).

 

b) \[3x\left( {x - 1} \right) + x - 1 = 0\]

\[\left( {3x + 1} \right)\left( {x - 1} \right) = 0\]

\[3x + 1 = 0\] hoặc \[x - 1 = 0\]

\[x = \frac{{ - 1}}{3}\] hoặc \[x = 1\]

Vậy \(x \in \left\{ { - \frac{1}{3};\,\,1} \right\}\).

c) x32x2+x=0

\[x\left( {{x^2} - 2x + 1} \right) = 0\]

\[x{\left( {x - 1} \right)^2} = 0\]

\[x = 0\] hoặc \[{\left( {x - 1} \right)^2} = 0\]

\[x = 0\] hoặc \[x = 1\]

Vậy \(x \in \left\{ {0;\,\,1} \right\}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Ta có: \(M = 2{x^2} + 4{y^2} + 6x - 4y + 2024\)

\( = \left( {{x^2} + 4x + 4} \right) + \left( {{x^2} + 4{y^2} + 1 + 2x - 4xy - 4y} \right) + 2019\)

\( = \left( {{x^2} + 4x + {2^2}} \right) + \left[ {{x^2} + {{\left( {2y} \right)}^2} + {1^2} + 2x - 2.x.2y - 2.2y} \right] + 2019\)

\( = {\left( {x + 2} \right)^2} + {\left( {x - 2y + 1} \right)^2} + 2019\).

Với mọi \(x,\,\,y \in \mathbb{R}\), ta có: \({\left( {x + 2} \right)^2} \ge 0;\) \({\left( {x - 2y + 1} \right)^2} \ge 0\).

Do đó \(M = {\left( {x + 2} \right)^2} + {\left( {x - 2y + 1} \right)^2} + 2019 \ge 2019\).

Dấu  xảy ra khi và chỉ khi \(\left\{ \begin{array}{l}{\left( {x + 2} \right)^2} = 0\\{\left( {x - 2y + 1} \right)^2} = 0\end{array} \right.\) hay \(\left\{ \begin{array}{l}x + 2 = 0\\x - 2y + 1 = 0\end{array} \right.\) nên \(\left\{ \begin{array}{l}x =  - 2\\y = \frac{{ - 1}}{2}\end{array} \right.\).

Vậy giá trị nhỏ nhất của biểu thức \(M\) là 2019 khi \(x =  - 2\) và \(y = \frac{{ - 1}}{2}.\)

Lời giải

Cho tam giác \(ABC\) vuôn (ảnh 1)

a) Xét tứ giác \(ADME\) có:

\(\widehat {DAE} = 90^\circ \) (\(\Delta ABC\) vuông tại \(A\))

\(\widehat {ADM} = 90^\circ \) \(\left( {MD \bot AB} \right)\)

\(\widehat {AEM} = 90^\circ \) \(\left( {ME \bot AC} \right)\)

Do đó tứ giác \(ADME\) là hình chữ nhật.

b) Vì \(ADME\) là hình chữ nhật nên \(AD = ME\,;\,\,AD\,{\rm{//}}\,ME\) (tính chất hình chữ nhật).

\(A\) là trung điểm của \(DI\); \(M\) là trung điểm của \(KE\) nên \[DI = KE;\,\,DI\,{\rm{//}}\,KE.\]

Suy ra \(DIEK\) là hình bình hành.

Do đó \(DK\,{\rm{//}}\,EI\)\(DK = EI\) (đpcm).

Câu 3

A. \[{\left( {x + 5y} \right)^2} = {x^2} + 5x + 25{y^2}\].                        
B. \[{\left( {x + 5y} \right)^2} = {x^2} + 2x + 25{y^2}\].          
C. \[{\left( {x + 5y} \right)^2} = {x^2} + 10x + 10{y^2}\].        
D. \[{\left( {x + 5y} \right)^2} = {x^2} + 10xy + 25{y^2}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(x\left( {3x + 2} \right) = 3{x^2} + 2x\).  
B. \(3x + 2 = {x^2} + 1\).                             
C. \({x^2} + x + 1 = {\left( {x + 1} \right)^2}\).                    
D. \(3x + 1 = x + 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(x\left( {x - 2} \right)\left( {x - 2} \right)\).                                                           
B. \(x\left( {x - 4} \right)\left( {x + 4} \right)\).                                  
C. \(x\left( {x - 2} \right)\left( {x + 2} \right)\).                                                           
D. \(x\left( {x - 4} \right)\left( {x + 2} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. đường trung tuyến.                                     
B. đường trung bình.        
C. đường phân giác.                                        
D. đường trung trực.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(2x{y^2} + 1\).  
B. \(\frac{1}{2}{x^3}{y^2}\).                              
C. \(\frac{3}{4}x{y^2} + 2\).                               
D. \(\frac{3}{{ - 2xy}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP