(1,0 điểm) Giữa hai điểm \(B\) và \(C\) bị ngăn cách bởi hồ nước (như hình vẽ). Xác định độ dài \(BC\) mà không cần phải di chuyển qua hồ nước. Biết rằng đoạn thẳng \(KI\) dài \(25\,\,{\rm{m}}\) và \(K\) là trung điểm của \(AB\), \(I\) là trung điểm của \(AC\).

(1,0 điểm) Giữa hai điểm \(B\) và \(C\) bị ngăn cách bởi hồ nước (như hình vẽ). Xác định độ dài \(BC\) mà không cần phải di chuyển qua hồ nước. Biết rằng đoạn thẳng \(KI\) dài \(25\,\,{\rm{m}}\) và \(K\) là trung điểm của \(AB\), \(I\) là trung điểm của \(AC\).

Quảng cáo
Trả lời:
Xét tam giác \[ABC\] có
\(K\) là trung điểm của \(AB\);
\(I\) là trung điểm của \(AC\).
Do đó \[KI\] là đường trung bình của tam giác \[ABC\].
Suy ra \(KI = \frac{1}{2}BC\) hay \(25 = \frac{1}{2}BC\).
Do đó \(BC = 50\,\,{\rm{m}}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Xét tứ giác \(ADME\) có:
\(\widehat {DAE} = 90^\circ \) (vì \(\Delta ABC\) vuông tại \(A\))
\(\widehat {ADM} = 90^\circ \) \(\left( {MD \bot AB} \right)\)
\(\widehat {AEM} = 90^\circ \) \(\left( {ME \bot AC} \right)\)
Do đó tứ giác \(ADME\) là hình chữ nhật.
b) Vì \(ADME\) là hình chữ nhật nên \(AD = ME\,;\,\,AD\,{\rm{//}}\,ME\) (tính chất hình chữ nhật).
Mà \(A\) là trung điểm của \(DI\); \(M\) là trung điểm của \(KE\) nên \[DI = KE;\,\,DI\,{\rm{//}}\,KE.\]
Suy ra \(DIEK\) là hình bình hành.
Do đó \(DK\,{\rm{//}}\,EI\) và \(DK = EI\) (đpcm).
Lời giải
Hướng dẫn giải
Ta có: \(M = 2{x^2} + 4{y^2} + 6x - 4y + 2024\)
\( = \left( {{x^2} + 4x + 4} \right) + \left( {{x^2} + 4{y^2} + 1 + 2x - 4xy - 4y} \right) + 2019\)
\( = \left( {{x^2} + 4x + {2^2}} \right) + \left[ {{x^2} + {{\left( {2y} \right)}^2} + {1^2} + 2x - 2.x.2y - 2.2y} \right] + 2019\)
\( = {\left( {x + 2} \right)^2} + {\left( {x - 2y + 1} \right)^2} + 2019\).
Với mọi \(x,\,\,y \in \mathbb{R}\), ta có: \({\left( {x + 2} \right)^2} \ge 0;\) \({\left( {x - 2y + 1} \right)^2} \ge 0\).
Do đó \(M = {\left( {x + 2} \right)^2} + {\left( {x - 2y + 1} \right)^2} + 2019 \ge 2019\).
Dấu xảy ra khi và chỉ khi \(\left\{ \begin{array}{l}{\left( {x + 2} \right)^2} = 0\\{\left( {x - 2y + 1} \right)^2} = 0\end{array} \right.\) hay \(\left\{ \begin{array}{l}x + 2 = 0\\x - 2y + 1 = 0\end{array} \right.\) nên \(\left\{ \begin{array}{l}x = - 2\\y = \frac{{ - 1}}{2}\end{array} \right.\).
Vậy giá trị nhỏ nhất của biểu thức \(M\) là 2019 khi \(x = - 2\) và \(y = \frac{{ - 1}}{2}.\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
