Số đường trung bình của một tam giác là
Quảng cáo
Trả lời:
Hướng dẫn giải:
Đáp án đúng là: C
Đường trung bình là đường thẳng đi qua hai cạnh của một tam giác.
Ta xác định được một trung điểm của mỗi cạnh của tam giác. Trung điểm của hai cạnh bất kì của tam giác sẽ tạo thành đường trung bình của tam giác đó.
Số đường trung bình của một tam giác là 3 đường.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Ta có \(EH\,{\rm{//}}\,AB\) mà \(AB\,{\rm{//}}\,CD\) nên \(EH\,{\rm{//}}\,CD.\)
• Xét \(\Delta ACD\) có \[OE{\rm{ // }}CD\] \[\left( {O\;\, \in EH,{\rm{ }}EH{\rm{// }}CD} \right)\], áp dụng hệ quả của định lí Thalès, ta có:
• Xét \(\Delta BCD\) có \[OH{\rm{ // }}CD\] \[\left( {O\,\; \in EH,{\rm{ }}EH{\rm{// }}CD} \right)\], áp dụng hệ quả của định lí Thalès, ta có:
• Xét \(\Delta ABC\) có \[OH{\rm{ // }}AB\] \[\left( {O\,\; \in EH,{\rm{ }}EH{\rm{// }}AB} \right)\], áp dụng định lí Thalès, ta có:
Từ (1), (2) và (3) suy ra \[\frac{{OH}}{{DC}} = \frac{{OE}}{{DC}}\] .
Do đó \[OE = OH\] (đpcm).
Câu 2
Lời giải
Hướng dẫn giải:
Đáp án đúng là: D
Vì \(AD\) là đường phân giác của \({\rm{\Delta }}ABC\) nên ta có \(\frac{{AB}}{{AC}} = \frac{{BD}}{{CD}}\) hay \(\frac{{BD}}{{AB}} = \frac{{CD}}{{AC}}\).
Suy ra \(\frac{x}{{15}} = \frac{y}{{20}}\).
Áp dụng tính chất của dãy các tỉ số bằng nhau, ta có:
\(\frac{x}{{15}} = \frac{y}{{20}} = \frac{{x + y}}{{15 + 20}} = \frac{{25}}{{35}} = \frac{5}{7}\).
Suy ra \(x = 15 \cdot \frac{5}{7} = \frac{{75}}{7}\); \(y = 20 \cdot \frac{5}{7} = \frac{{100}}{7}\).
Vậy \(x = \frac{{75}}{7}\); \(y = \frac{{100}}{7}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
