Số đường trung bình của một tam giác là
Câu hỏi trong đề: Bộ 10 đề thi Cuối kì 1 Toán 8 Kết nối tri thức có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải:
Đáp án đúng là: C
Đường trung bình là đường thẳng đi qua hai cạnh của một tam giác.
Ta xác định được một trung điểm của mỗi cạnh của tam giác. Trung điểm của hai cạnh bất kì của tam giác sẽ tạo thành đường trung bình của tam giác đó.
Số đường trung bình của một tam giác là 3 đường.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Ta có \(EH\,{\rm{//}}\,AB\) mà \(AB\,{\rm{//}}\,CD\) nên \(EH\,{\rm{//}}\,CD.\)
• Xét \(\Delta ACD\) có \[OE{\rm{ // }}CD\] \[\left( {O\;\, \in EH,{\rm{ }}EH{\rm{// }}CD} \right)\], áp dụng hệ quả của định lí Thalès, ta có:
• Xét \(\Delta BCD\) có \[OH{\rm{ // }}CD\] \[\left( {O\,\; \in EH,{\rm{ }}EH{\rm{// }}CD} \right)\], áp dụng hệ quả của định lí Thalès, ta có:
• Xét \(\Delta ABC\) có \[OH{\rm{ // }}AB\] \[\left( {O\,\; \in EH,{\rm{ }}EH{\rm{// }}AB} \right)\], áp dụng định lí Thalès, ta có:
Từ (1), (2) và (3) suy ra \[\frac{{OH}}{{DC}} = \frac{{OE}}{{DC}}\] .
Do đó \[OE = OH\] (đpcm).
Lời giải
Hướng dẫn giải
Ta có \(A = x\left( {x - 7} \right)\left( {x - 3} \right)\left( {x - 4} \right) = \left( {{x^2} - 7x} \right)\left( {{x^2} - 7x + 12} \right)\).
Đặt \(t = {x^2} - 7x + 6\), khi đó:
\(A = \left( {t - 6} \right)\left( {t + 6} \right) = {t^2} - 36 \ge - 36\).
Dấu khi \({t^2} = 0\) hay \({x^2} - 7x + 6 = 0\)
\[\left( {{x^2} - x} \right) - \left( {6x - 6} \right) = 0\]
\[x\left( {x - 1} \right) - 6\left( {x - 1} \right) = 0\]
\[\left( {x - 1} \right)\left( {x - 6} \right) = 0\]
Suy ra \(x = 1\) hoặc \(x = 6\).
Vậy giá trị nhỏ nhất của biểu thức \[A\] bằng \( - 36\) khi \(x = 1\) hoặc \(x = 6\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
