Quảng cáo
Trả lời:
Hướng dẫn giải:
a) Ta có \(B - A = - 2{x^3}y + 7{x^2}y + 3xy.\)
Suy ra \(B = - 2{x^3}y + 7{x^2}y + 3xy + A\)
\( = - 2{x^3}y + 7{x^2}y + 3xy + \left( {3{x^2}y - 2x{y^2} - 4xy + 1} \right)\)
\( = - 2{x^3}y + 7{x^2}y + 3xy + 3{x^2}y - 2x{y^2} - 4xy + 1\)
\( = - 2{x^3}y + \left( {7{x^2}y + 3{x^2}y} \right) - 2x{y^2} + \left( {3xy - 4xy} \right) + 1\)
\( = - 2{x^3}y + 10{x^2}y - 2x{y^2} - xy + 1\).
b) Ta có \(A + M = 3{x^2}{y^2} - 5{x^2}y + 8xy\).
Suy ra \(M = 3{x^2}{y^2} - 5{x^2}y + 8xy - A\)
\( = 3{x^2}{y^2} - 5{x^2}y + 8xy - \left( {3{x^2}y - 2x{y^2} - 4xy + 1} \right)\)
\( = 3{x^2}{y^2} - 5{x^2}y + 8xy - 3{x^2}y + 2x{y^2} + 4xy - 1\)
\( = 3{x^2}{y^2} - \left( {5{x^2}y + 3{x^2}y} \right) + 2x{y^2} + \left( {8xy + 4xy} \right) - 1\)
\( = 3{x^2}{y^2} - 8{x^2}y + 2x{y^2} + 12xy - 1\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Ta có \(EH\,{\rm{//}}\,AB\) mà \(AB\,{\rm{//}}\,CD\) nên \(EH\,{\rm{//}}\,CD.\)
• Xét \(\Delta ACD\) có \[OE{\rm{ // }}CD\] \[\left( {O\;\, \in EH,{\rm{ }}EH{\rm{// }}CD} \right)\], áp dụng hệ quả của định lí Thalès, ta có:
• Xét \(\Delta BCD\) có \[OH{\rm{ // }}CD\] \[\left( {O\,\; \in EH,{\rm{ }}EH{\rm{// }}CD} \right)\], áp dụng hệ quả của định lí Thalès, ta có:
• Xét \(\Delta ABC\) có \[OH{\rm{ // }}AB\] \[\left( {O\,\; \in EH,{\rm{ }}EH{\rm{// }}AB} \right)\], áp dụng định lí Thalès, ta có:
Từ (1), (2) và (3) suy ra \[\frac{{OH}}{{DC}} = \frac{{OE}}{{DC}}\] .
Do đó \[OE = OH\] (đpcm).
Câu 2
Lời giải
Hướng dẫn giải:
Đáp án đúng là: A
Ta có \[{x^2} - 20x + 101 = {x^2} - 2 \cdot x \cdot 10 + {10^2} + 1 = {\left( {x - 10} \right)^2} + 1\].
Vì \[{\left( {x - 10} \right)^2} \ge 0\] nên \[{\left( {x - 10} \right)^2} + 1 > 0\].
Vậy với mọi giá trị \(x \in \mathbb{R}\) thì giá trị của biểu thức \({x^2} - 20x + 101\) là một số dương.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
