Câu hỏi:

21/11/2025 43 Lưu

(1,5 điểm) Biểu đồ cột biểu diễn sản lượng khoai lang ở Phú Thọ qua các năm 2015; 2018; 2019; 2020 (đơn vị: nghìn tấn):

(1,5 điểm) Biểu đồ cột biểu diễn sản lượng khoai lang ở Phú Thọ qua các năm 2015; 2018; 2019; 2020 (đơn vị: nghìn tấn): (ảnh 1)

a) Biểu đồ trên là biểu đồ gì? Để thu được dữ liệu được biểu diễn ở biểu đồ trên, ta sử dụng phương pháp thu thập trực tiếp hay gián tiếp?

b) Năm 2019 sản lượng khoai lang ở Phú Thọ tăng hay giảm bao nhiêu phần trăm so với năm 2015 (làm tròn kết quả đến hàng phần mười)? Em có nhận xét gì về sản lượng khoai lang ở Phú Thọ qua các năm 2015; 2018; 2019; 2020.

c) Một bài báo đã nêu nhận định sau: “Năm 2020 sản lượng khoai lang ở Phú Thọ là ít nhất, năm 2020 sản lượng khoai lang ở Phú Thọ giảm \[19,2\% \] so với năm 2018”. Theo em, nhận định của bài báo đó có chính xác không?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

a) Biểu đồ đã cho là biểu đồ cột.

Để thu được dữ liệu được biểu diễn ở biểu đồ trên, ta sử dụng phương pháp thu thập gián tiếp bằng cách truy cập website của Niên giám thống kê 2021.

b) Ta thấy sản lượng khoai lang Phú Thọ năm 2019 nhỏ hơn sản lượng khoai lang Phú Thọ năm 2015 (vì \(10,2 < 14,5\)).

Do đó, sản lượng khoai lang Phú Thọ năm 2019 giảm so với năm 2015.

Tỉ số phần trăm sản lượng khoai lang ở Phú Thọ trong năm 2019 so với năm 2015 là: \(\frac{{10,2}}{{14,5}} \cdot 100\% \approx 70,3\% \).

Vậy năm 2019 sản lượng khoai lang ở Phú Thọ tăng khoảng \(100\% - 70,3\% = 29,7\% \) so với năm 2015.

c) Năm 2020 sản lượng khoai lang ở Phú Thọ là 8,4 nghìn tấn ít nhất so với các năm còn lại.

Tỉ số phần trăm sản lượng khoai lang ở Phú Thọ năm 2020 so với năm 2018 là:

\(\frac{{8,4}}{{10,4}} = 80,8\% \).

Năm 2020 sản lượng khoai lang ở Phú Thọ giảm \[19,2\% \] so với năm 2018.

Theo em nhận định của bài báo đó chính xác.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) \({x^3}y + 2{x^2}y + xy\)

\( = xy \cdot \left( {{x^2} + 2x + 1} \right)\)

\( = xy \cdot {\left( {x + 1} \right)^2}.\)

b) \({x^2} - 9 - 4xy + 4{y^2}\)

\( = \left( {{x^2} - 4xy + 4{y^2}} \right) - 9\)

\( = {\left( {x - 2y} \right)^2} - {3^2}\)

\( = \left( {x - 2y - 3} \right)\left( {x - 2y + 3} \right).\)

Lời giải

Hướng dẫn giải:

1. Xét \(\Delta ABC\) vuông tại \[A\], theo định lý Pythagore, ta có:

\(A{B^2} + A{C^2} = B{C^2}\)

Suy ra \[A{C^2} = B{C^2} - A{B^{2\;}} = {100^2} - {60^2} = 6400\].

Khi đó \[AC = \sqrt {6\,400} = 80\,\,{\rm{(cm)}}\]

\[80\,\,{\rm{cm}} < 85\,\,{\rm{cm}}\] nên nhà bạn Nam đã thực hiện đúng quy định của khu phố.
2.

Theo quy định của khu phố, mỗi gia đì (ảnh 2)

a) Do \(E\) là trung điểm của \(BC\) nên \(BE = \frac{1}{2}BC\) hay \(BC = 2BE.\)

\(BC = 2AB\)\(BC = 2BE\) nên \(AB = BE\).

Theo đề bài, tứ giác \(ABCD\)hình bình hành nên \(AD = BC,\,\,AD\,{\rm{//}}\,BC\).

\(AD = BC\); \(BE = \frac{1}{2}BC;\,AF = \frac{1}{2}AD\) (do \(F\) là trung điểm của \(AD)\) nên \(BE = AF\).

Tứ giác \(ABEF\)\(BE = AF\) (cmt) và \(BE\,{\rm{//}}\,AF\) (vì \(AD\,{\rm{//}}\,BC\)).

Suy ra, tứ giác \(ABEF\) là hình bình hành.

Hình bình hành \(ABEF\)\(AB = BE\) nên \(ABEF\) là hình thoi.

b) Vì tứ giác \(ABCD\)hình bình hành nên \(AB = CD,\,\,AB\,{\rm{//}}\,CD\).

\(AB = CD\); \(AB = BI\) (do \(B\) là trung điểm của \(AI)\) nên \(BI = CD\).

Tứ giác \(BICD\)\(BI\,{\rm{//}}\,CD\) (vì \(AB\,{\rm{//}}\,CD\)) và \(BI = CD\) nên tứ giác \(BICD\) là hình bình hành.

Ta thấy \(BD\) vừa là đường trung tuyến vừa là đường phân giác của tam giác \(ADI\) nên tam giác \(ADI\) cân tại \(D\).

Tam giác \(ADI\) cân tại \(D\)\(\widehat {DAI} = 60^\circ \) nên tam giác \(ADI\) là tam giác đều.

Suy ra \(BD\) cũng là đường cao của tam giác \(ADI\) nên \(BD \bot BI\) hay \(\widehat {DBI} = 90^\circ .\)

Hình bình hành \(BICD\)\(\widehat {DBI} = 90^\circ \) nên tứ giác \(BICD\) là hình chữ nhật.

Khi đó, \(E\) là trung điểm của \(DI\).

Ta có tam giác \(ADI\) là tam giác đều\(AE\) là đường trung tuyến nên đồng thời là đường cao.

Do đó, \(AE \bot DI\) hay \(\widehat {AED} = 90^\circ \).

Câu 4

A. \[h = 3a\].           
B. \[h = \frac{{3a}}{8}\].              
C. \[h = \frac{{3a}}{4}\].              
D. \[h = \frac{{3a}}{2}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \({\rm{2}}\,\,{\rm{592}}\,\,{\rm{100}}\;{{\rm{m}}^{\rm{2}}}\).                                                                 
B. \({\rm{2}}\,\,{\rm{592}}\,\,{\rm{100}}\;{{\rm{m}}^{\rm{3}}}\).
C. \({\rm{7}}\,\,{\rm{776}}\,\,{\rm{300}}\;{{\rm{m}}^{\rm{3}}}\).                                                                
D. \({\rm{3}}\,\,{\rm{888}}\,\,{\rm{150}}\;{{\rm{m}}^{\rm{3}}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[15^\circ \].       
B. \[285^\circ \].     
C. \[105^\circ \].     
D. \[115^\circ \].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP