Câu hỏi:

21/11/2025 7 Lưu

Chân đường cao của hình chóp tam giác đều là        

A. Trọng tâm của tam giác.                     
B. Trực tâm của tam giác.        
C. Giao điểm của ba đường phân giác.   
D. Cả A, B, C đều đúng.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

Do mặt đáy của hình chóp tam giác đều là tam giác đều nên chân đường cao của hình chóp tam giác đều là trọng tâm, cũng là trực tâm và giao điểm ba đường phân giác của tam giác.

Vậy ta chọn phương án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Theo đề bài: \({x^2} + \frac{8}{{{x^2}}} + \frac{{{y^2}}}{8} = 8\) suy ra \(2{x^2} + \frac{{16}}{{{x^2}}} + \frac{{{y^2}}}{4} = 16\)

Ta có: \[2{x^2} + \frac{{16}}{{{x^2}}} + \frac{{{y^2}}}{4} = \left( {{x^2} + \frac{{16}}{{{x^2}}} - 8} \right) + \left( {{x^2} + \frac{{{y^2}}}{4} - xy} \right) + xy + 8\]

\[ = {\left( {x - \frac{4}{x}} \right)^2} + {\left( {x - \frac{y}{2}} \right)^2} + xy + 8\].

\[{\left( {x - \frac{4}{x}} \right)^2} \ge 0\,;\,\,{\left( {x - \frac{y}{2}} \right)^2} \ge 0\] nên \[xy + 8 \le 16\] hay \[xy \le 8\].

Suy ra \(A = xy + 2023 \le 8 + 2023 = 2031\).

Dấu xảy ra khi và chỉ khi \(\left\{ \begin{array}{l}{\left( {x - \frac{4}{x}} \right)^2} = 0\\{\left( {x - \frac{y}{2}} \right)^2} = 0\end{array} \right.\) hay \(\left\{ \begin{array}{l}x - \frac{4}{x} = 0\\x - \frac{y}{2} = 0\end{array} \right.\) nên \(\left\{ \begin{array}{l}{x^2} = 4\\y = 2x\end{array} \right.\).

Khi đó, \(x = 2\,;\,\,y = 4\) hoặc \(x = - 2\,;\,\,y = - \,4\).

Vậy giá trị lớn nhất của biểu thức \(A\)2031 khi \(x = 2\,;\,\,y = 4\) hoặc \(x = - 2\,;\,\,y = - \,4\).

Lời giải

Hướng dẫn giải

a) Điều kiện xác định của biểu thức \[D\] là: \[3x \ne 0;{\rm{ }}x + 1 \ne 0;\]\(\frac{{2 - 4x}}{{x + 1}} \ne 0\).

Xét \[3x \ne 0\] ta có \[x \ne 0.\]

Xét \[x + 1 \ne 0\] ta có \[x \ne --1.\]

Xét \(\frac{{2 - 4x}}{{x + 1}} \ne 0\) ta có \[2--4x \ne 0\]\[x + 1 \ne 0,\] hay \(x \ne \frac{1}{2}\)\[x \ne --1.\]

Vậy điều kiện xác định của biểu thức \[D\]\(x \ne 0\,;\,\,x \ne - 1\,;\,\,x \ne \frac{1}{2}.\)

b) Với \(x \ne 0\,;\,\,x \ne - 1\,;\,\,x \ne \frac{1}{2},\) ta có:

\(D = \left( {\frac{{x + 2}}{{3x}} + \frac{2}{{x + 1}} - 3} \right):\frac{{2 - 4x}}{{x + 1}} - \frac{{3x - {x^2} + 1}}{{3x}}\)

\( = \frac{{\left( {x + 2} \right)\left( {x + 1} \right) + 2 \cdot 3x - 3 \cdot 3x\left( {x + 1} \right)}}{{3x \cdot \left( {x + 1} \right)}} \cdot \frac{{x + 1}}{{2 - 4x}} - \frac{{3x - {x^2} + 1}}{{3x}}\)

\( = \frac{{{x^2} + 2x + x + 2 + 6x - 9{x^2} - 9x}}{{3x\left( {x + 1} \right)}} \cdot \frac{{x + 1}}{{2 - 4x}} - \frac{{3x - {x^2} + 1}}{{3x}}\)

\( = \frac{{ - 8{x^2} + 2}}{{3x\left( {x + 1} \right)}} \cdot \frac{{x + 1}}{{2 - 4x}} - \frac{{3x - {x^2} + 1}}{{3x}}\)

\( = \frac{{2\left( {1 - 4{x^2}} \right) \cdot \left( {x + 1} \right)}}{{3x\left( {x + 1} \right) \cdot \left( {2 - 4x} \right)}} - \frac{{3x - {x^2} + 1}}{{3x}}\)

\( = \frac{{2\left( {1 - 2x} \right)\left( {1 + 2x} \right)}}{{3x \cdot 2\left( {1 - 2x} \right)}} - \frac{{3x - {x^2} + 1}}{{3x}}\)

\( = \frac{{1 + 2x}}{{3x}} - \frac{{3x - {x^2} + 1}}{{3x}} = \frac{{1 + 2x - 3x + {x^2} - 1}}{{3x}}\)

\( = \frac{{{x^2} - x}}{{3x}} = \frac{{x\left( {x - 1} \right)}}{{3x}} = \frac{{x - 1}}{3}\).

Vậy với \(x \ne 0\,;\,\,x \ne - 1\,;\,\,x \ne \frac{1}{2},\) thì \(D = \frac{{x - 1}}{3}.\)

c) Ta thấy \[x = \frac{1}{2}\] thỏa mãn điều kiện xác định.

Do đó, giá trị của biểu thức \[D\] tại \[x = \frac{1}{2}\] là: \(D = \frac{{\frac{1}{2} - 1}}{3} = \frac{{ - \frac{1}{2}}}{3} = - \frac{1}{6}.\)

Vậy \(D = - \frac{1}{6}\) khi \(x = \frac{1}{2}.\)

Câu 3

A. 3.                         
B. 4.                         
C. 5.     
D. 6.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(25^\circ .\)       
B. \(105^\circ .\)     
C. \(75^\circ .\)                             
D. \(125^\circ .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\frac{{x - 2}}{{3x}}.\)                      
B. \(\frac{{2 + x}}{{3x}}.\)                      
C. \(\frac{{3x}}{{2 - x}}.\)                                
D. \(\frac{{3x}}{{x - 2}}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\frac{{{S_{xq}}}}{a}.\)                    
B. \(\frac{{2{S_{xq}}}}{a}.\)                               
C. \(\frac{{{S_{xq}}}}{{2a}}.\)                            
D. \(\frac{{{S_{xq}}}}{{4a}}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP