Giải các phương trình sau:
a) \[9{x^2}\left( {2x - 3} \right) = 0.\]
b) \(\frac{3}{{x + 1}} - \frac{2}{{x - 2}} = \frac{{4x - 2}}{{\left( {x + 1} \right)\left( {x - 2} \right)}}.\)
Giải các phương trình sau:
a) \[9{x^2}\left( {2x - 3} \right) = 0.\]
b) \(\frac{3}{{x + 1}} - \frac{2}{{x - 2}} = \frac{{4x - 2}}{{\left( {x + 1} \right)\left( {x - 2} \right)}}.\)
Quảng cáo
Trả lời:
a) \(9{x^2}\left( {2x - 3} \right) = 0\)
\(9{x^2} = 0\) hoặc \(2x - 3 = 0\)
\({x^2} = 0\) hoặc \(2x = 3\)
\(x = 0\) hoặc \(x = \frac{3}{2}\).
Vậy phương trình đã cho có hai nghệm là \(x = 0;\) \(x = \frac{3}{2}\).b) Điều kiện xác định \(x + 1 \ne 0\) và \(x - 2 \ne 0\) hay \(x \ne - 1\) và \(x \ne 2\).
Quy đồng mẫu hai vế của phương trình, ta được
\(\frac{{3\left( {x - 2} \right) - 2\left( {x + 1} \right)}}{{\left( {x + 1} \right)\left( {x - 2} \right)}} = \frac{{4x - 2}}{{\left( {x + 1} \right)\left( {x - 2} \right)}}\)
Suy ra \(3\left( {x - 2} \right) - 2\left( {x + 1} \right) = 4x - 2\)
\(3x - 6 - 2x - 2 = 4x - 2\)
\[x - 8 = 4x - 2\]
\[3x = - 6\]
\[x = - 2\].
Giá trị \[x = - 2\] thỏa mãn ĐKXĐ. Vậy nghiệm của phương trình là \[x = - 2\].Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Vì \(ABC\) là tam giác đều cạnh \(20{\rm{\;cm}}\) nên \(BC = 20{\rm{\;cm}}\) và \(\widehat {B\,} = 60^\circ .\)
Giả sử \(MB = x\,\,\left( {x > 0} \right){\rm{\;(cm)}}{\rm{.}}\) Khi đó \[QC = x{\rm{\;(cm)}}\] và \(MQ = BC - BM - QC = 20 - 2x{\rm{\;(cm)}}{\rm{.}}\)
Xét \(\Delta MNB\) vuông tại \(M,\) ta có: \(MN = MB \cdot \tan B = x\tan 60^\circ = x\sqrt 3 {\rm{\;(cm)}}{\rm{.}}\)
Diện tích hình chữ nhật \(MNPQ\) là: \(S\left( x \right) = \left( {20 - 2x} \right) \cdot x\sqrt 3 = 2\sqrt 3 \cdot x\left( {10 - x} \right){\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\)
Để diện tích hình chữ nhật \(MNPQ\) lớn nhất thì ta tìm giá trị lớn nhất của biểu thức \(S\left( x \right)\).
⦁ Chứng minh bất đẳng thức: \(ab \le {\left( {\frac{{a + b}}{2}} \right)^2}\,\,\,\,\left( * \right)\) với \(a,\,\,b\) là các số không âm.
Thật vậy, xét hiệu \({\left( {\frac{{a + b}}{2}} \right)^2} - ab = \frac{{{a^2} + 2ab + {b^2} - 4ab}}{4} = \frac{{{a^2} - 2ab + {b^2}}}{4} = \frac{{{{\left( {a - b} \right)}^2}}}{2}\)
Với mọi \(a,\,\,b\) là các số không âm, ta có:
\({\left( {a - b} \right)^2} \ge 0\) nên \(\frac{{{{\left( {a - b} \right)}^2}}}{2} \ge 0\) suy ra \({\left( {\frac{{a + b}}{2}} \right)^2} \ge ab\).
Dấu “=” xảy ra khi và chỉ khi \(a = b.\) Như vậy bất đẳng thức \(\left( * \right)\) đã được chứng minh.
⦁ Áp dụng bất đẳng thức \(\left( * \right)\) cho biểu thức \(S\left( x \right) = 2\sqrt 3 \cdot x\left( {10 - x} \right),\) ta được:
\[S\left( x \right) = 2\sqrt 3 \cdot x\left( {10 - x} \right) \le 2\sqrt 3 \cdot {\left( {\frac{{x + 10 - x}}{2}} \right)^2} = 50\sqrt 3 \].
Dấu “=” xảy ra khi và chỉ khi \[x = 10 - x\] hay \[x = 5\].
Vậy \(MB = 5{\rm{\;cm}}\) thì hình chữ nhật \(MNPQ\) có diện tích lớn nhất.
Lời giải
Gọi \[x,{\rm{ }}y\] (học sinh) lần lượt là số học sinh nam và số học sinh nữ của lớp 9A \[\left( {x,{\rm{ }}y \in \mathbb{N}*;\,\,x,\,\,y < 35} \right).\]
Vì lớp 9A có 35 học sinh nên ta có: \[x + y = 35 & \left( 1 \right)\]
Số học sinh nam không bị cận thị là \[25\% \cdot x = 0,25x\] (học sinh)
Số học sinh nữ không bị cận thị là \[20\% \cdot x = 0,2y\] (học sinh)
Vì số học sinh không bị cận thị là 8 nên ta có: \[0,25x + 0,2y = 8\] hay \[5x + 4y = 160 & \left( 2 \right)\]
Từ \[\left( 1 \right)\] và \[\left( 2 \right)\] ta có hệ phương trình \(\left\{ \begin{array}{l}x + y = 35\\5x + 4y = 160\end{array} \right.\).
Nhân hai vế của phương trình thứ nhất với \(5,\) ta được hệ phương trình \(\left\{ \begin{array}{l}5x + 5y = 175\\5x + 4y = 160\end{array} \right..\)
Trừ từng vế hai phương trình của hệ phương trình trên, ta được: \(y = 15\) (thỏa mãn).
Thay \(y = 15\) vào phương trình thứ nhất của hệ ban đầu, ta được:
\(x + 15 = 35\) suy ra \(x = 35 - 15 = 20\) (thỏa mãn).
Vậy số học sinh nữ không bị cận thị là \[20\% \cdot 15 = 3\] (học sinh).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Nhiệt độ sôi của một chất là mốc nhiệt độ mà tại đó chất chuyển từ thể lỏng sang thể khí. Ví dụ, nhiệt độ sôi của chlorine là \( - 34^\circ {\rm{C}}\) có nghĩa là dung dịch clo khi đạt đến nhiệt độ \( - 34^\circ {\rm{C}}\) sẽ chuyển sang thể khí (khí chlorine). Nếu gọi \(C\) là nhiệt độ của clo theo đơn vị độ C (Celsius) thì bất đẳng thức \(C > - 34\) biểu thị cho nhiệt độ mà clo ở trạng thái khí. Nếu gọi \(F\) là nhiệt độ của clo theo đơn vị độ \(F\) (Fahrenheit) thì ta có \(F = \frac{9}{5}C + 32.\)
a) Viết bất phương trình biểu diễn điều kiện để clo ở trạng thái khí.
b) Hỏi với những giá trị nào của \(F\) thì clo ở trạng thái khí?
Nhiệt độ sôi của một chất là mốc nhiệt độ mà tại đó chất chuyển từ thể lỏng sang thể khí. Ví dụ, nhiệt độ sôi của chlorine là \( - 34^\circ {\rm{C}}\) có nghĩa là dung dịch clo khi đạt đến nhiệt độ \( - 34^\circ {\rm{C}}\) sẽ chuyển sang thể khí (khí chlorine). Nếu gọi \(C\) là nhiệt độ của clo theo đơn vị độ C (Celsius) thì bất đẳng thức \(C > - 34\) biểu thị cho nhiệt độ mà clo ở trạng thái khí. Nếu gọi \(F\) là nhiệt độ của clo theo đơn vị độ \(F\) (Fahrenheit) thì ta có \(F = \frac{9}{5}C + 32.\)
a) Viết bất phương trình biểu diễn điều kiện để clo ở trạng thái khí.
b) Hỏi với những giá trị nào của \(F\) thì clo ở trạng thái khí?
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
