Câu hỏi:

02/12/2025 124 Lưu

Cho hình chóp \(S.ABCD\) có đáy là hình bình hành. Gọi \(M\) là trung điểm của \(SA\). Giao điểm của đường thẳng \(SB\) và mặt phẳng \(\left( {CMD} \right)\) là

Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M là trung điểm của SA. Giao điểm của đường thẳng SB và mặt phẳng (CMD) là (ảnh 1)

A. Giao điểm của đường thẳng \(SB\) và \(MC\). 

B. Trung điểm của đoạn thẳng \(SB\). 

C. Giao điểm của đường thẳng \(SB\) và \(MD\). 
D. Giao điểm của đường thẳng \(SB\) và \(DC\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M là trung điểm của SA. Giao điểm của đường thẳng SB và mặt phẳng (CMD) là (ảnh 2)

Gọi \(O\) là giao điểm của \(AC\) và \(BD\).

Trong mặt phẳng \[\left( {SAC} \right)\], gọi \(H\) là giao điểm của \(SO\) và \(CM\).

Vì \(SO,CM\) là trung tuyến nên H là trọng tâm của tam giác \(SAC\) \( \Rightarrow \frac{{SH}}{{SO}} = \frac{2}{3}\).

Trong mặt phẳng \(\left( {SBD} \right)\), gọi \(I\) là giao điểm của \(DH\) và \(SB\).

Mà \(DH \subset \left( {MCD} \right)\) nên \(I = SB \cap \left( {MCD} \right)\).

Xét tam giác \(SBD\) có \(SO\) là trung tuyến và \(\frac{{SH}}{{SO}} = \frac{2}{3}\) nên \(H\) là trọng tâm của tam giác \(SBD\).

Suy ra \(I\) là trung điểm của \(SB\). Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp S.ABCD có đáy là hình thang đáy lớn AB và AB = 2CD, AC và BD cắt nhau tại O. Gọi M,N là điểm trên cạnh SC,SB sao cho SM = 2MC; SN = 2/3 SB. (ảnh 1)

a) Có \(S.ABCD\)là hình chóp nên\(AB\) và \(SC\) là hai đường thẳng chéo nhau.

b) Vì \(\frac{{SM}}{{SC}} = \frac{{SN}}{{SB}} = \frac{2}{3} \Rightarrow MN//BC\).

c) Có \(MN//BC \Rightarrow \frac{{SM}}{{SC}} = \frac{{SN}}{{SB}} = \frac{{MN}}{{BC}} = \frac{2}{3}\)\( \Rightarrow MN = \frac{2}{3}BC = \frac{2}{3} \cdot 6 = 4\).

d) Vì \(\Delta OAB\) và \(\Delta OCD\) là hai tam giác đồng dạng nên \(\frac{{OC}}{{OA}} = \frac{{CD}}{{AB}} = \frac{1}{2} \Rightarrow OC = \frac{1}{2}OA \Rightarrow \frac{{CO}}{{CA}} = \frac{1}{3}\).

Xét \(\Delta SAC\) có \(\frac{{CM}}{{SC}} = \frac{{CO}}{{AC}} = \frac{1}{3} \Rightarrow OM//SA\).

Đáp án: a) Đúng;    b) Đúng;    c) Sai;    d) Đúng.

Câu 2

A. Đường thẳng MN.

B. Đường thẳng AM.

C. Đường thẳng DH (H là trọng tâm tam giác ABC).

D. Đường thẳng BG (G là trọng tâm tam giác ACD).

Lời giải

Cho tứ diện ABCD. Gọi M,N lần lượt là trung điểm của AB,BC. Giao tuyến của hai mặt phẳng (MCD) và (ADN) là: (ảnh 1)

Gọi \(H\) là giao điểm của \(AN\) và \(CM\).

Suy ra \(H\) là trọng tâm của tam giác \(ABC\).

Khi đó \(\left( {MCD} \right) \cap \left( {ADN} \right) = DH\). Chọn C.

Câu 3

a) \(IC//\left( {A'B'C'} \right)\).

Đúng
Sai

b) \(\left( {A'IC} \right)//\left( {BC'B'} \right)\).

Đúng
Sai

c) Gọi \(M,N\) lần lượt là trung điểm \(BB',CC'\). Khi đó \(\left( {EB'C'} \right)//\left( {IMN} \right)\).

Đúng
Sai
d) Giao tuyến của hai mặt phẳng \(\left( {A'IC} \right)\) và \(\left( {AJC'} \right)\) song song với mặt phẳng \(\left( {BCC'B'} \right)\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP