Câu hỏi:

02/12/2025 6 Lưu

Nhà bạn Nam dùng mật khẩu để mở cửa nhà. Do đãng trí nên Nam đi học về và quên mật khẩu, chỉ nhớ mật khẩu là số có ba chữ số và các chữ số này đều là lẻ. Tính xác suất Nam bấm 1 lần mở được cửa.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Do mật khẩu là số có ba chữ số và các chữ số này đều là lẻ nên các số đó được tạo thành từ bộ số \(\left\{ {1;3;5;7;9} \right\}\).

Ta có \(5\) cách chọn chữ số hàng trăm;

          \(5\) cách chọn chữ số hàng chục;

          \(5\) cách chọn chữ số hàng đơn vị.

Từ đó, số kết quả có thể xảy ra là: \(5.5.5 = 125\).

Mà Nam chỉ bấm 1 lần nên khả năng xảy ra của mỗi biến cố là như nhau.

Do đó, xác suất để Nam bấm 1 lần mở được cửa là: \(\frac{1}{{125}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Cho \[\Delta ABC\] nhọn \(\left( {A (ảnh 1)

a) Chứng minh: \(\Delta ABC = \Delta BAE\).

\(D\) nằm trên đường trung trực của \(AB\) nên \(DA = DB\).

Suy ra \(\Delta DAB\) cân tại \(D\).

Suy ra \(\widehat {DAB} = \widehat {DBA}\) hay \(\widehat {EAB} = \widehat {CBA}\).

Xét \(\Delta ABC\)\(\Delta BAE\) có:

\(AB\) cạnh chung; \(\widehat {EAB} = \widehat {CBA}\) (cmt); \(AE = BC\) (giả thiết)

Vậy \(\Delta ABC = \Delta BAE\) (c.g.c)

b) Chứng minh \(AB\,\parallel \,CE\).

Ta có \(AE = BC\) (giả thiết); \(DA = DB\) (chứng minh trên)

Suy ra \(DA - AE = DB - BC\) nên \(DE = DC\).

Do đó \(\Delta DEC\) cân tại \(D\).

Suy ra \(\widehat {DEC} = \widehat {DAB} = \frac{{180^\circ  - \widehat {ADB}}}{2}\) hay \(\widehat {DEC}\)\(\widehat {DAB}\) ở vị trí đồng vị

Do đó \(AB\,\parallel CE\).

c) Trung trực của cạnh \(AB,\,BE,\,AC\) cùng đi qua một điểm

Gọi \(H\) là giao điểm của trung trực \(AB\) \(AC\).

Suy ra \(HA = HB = HC\).     \(\left( 1 \right)\).

Ta có \(H\) \(D\) nằm trên trung trực của \(AB\) nên \(HD \bot AB\).

\(AB\parallel CE\) nên \(HD \bot CE\).

Mặt khác \(\Delta DEC\) cân tại \(D\) \(HD \bot CE\).

Suy ra \(HD\) là trung trực của \(CE\) hay \(HE = HC\) \(\left( 2 \right)\).

Từ \(\left( 1 \right)\) \(\left( 2 \right)\) suy ra \(HB = HE\) nên \(H\) thuộc trung trực của \(BE\).

Vậy trung trực của \(AB,\,\,\,BE,\,\,\,AC\) cùng đi qua một điểm \(H\).

Lời giải

Cho \[\Delta ABC\] có \[AB = A (ảnh 1)

a) Xét \(\Delta ABM\)\(\Delta DCM\), có:

\[AM = MD\] (gt)

\[\widehat {BMA} = \widehat {CMD}\] (đối đỉnh)

\[BM = MC\] (gt)

Do đó, \(\Delta ABM = \Delta DCM\) (c.g.c)

b) Từ phần a, có \(\Delta ABM = \Delta DCM\) (c.g.c) nên \(\widehat {ABM} = \widehat {DCM}\) (hai góc tương ứng)

Mà hai góc ở vị trí so le trong, suy ra \(AB\parallel DC\).

c) Xét \[\Delta ABC\]\[AB = AC\] nên \[\Delta ABC\] cân tại \[A\].

Mà có \[M\] là trung điểm của \[BC\] nên \[AM\] là đường cao của \[\Delta ABC\].

Suy ra \(AM \bot BC\).

d) Từ a) có \(\Delta ABM = \Delta DCM\) (c.g.c) nên \(AB = DC\) (2 cạnh tương ứng).

\[AB = AC\] nên \[AC = CD\], suy ra \(\Delta CAD\) cân tại \(C\).

Suy ra \(\widehat {ADC} = \widehat {CAD} = 45^\circ \).

\(\widehat {BAC} = 2\widehat {CAD} = 90^\circ \) (\[AM\] vừa là đường cao, vừa là đường phân giác \(\widehat {BAC}\)).

Lúc này \[\Delta ABC\] là tam giác vuông cân tại \[A\].

Vậy để góc \(\widehat {ADC} = 45^\circ \) thì \[\Delta ABC\] là tam giác vuông cân tại \[A\].