Câu hỏi:

02/12/2025 5 Lưu

Một cái túi có 4 quả cầu đỏ, 6 quả cầu xanh và 2 quả cầu vằng. Chọn ngẫu nhiên hai quả cầu. Tính xác suất để trong hai quả cầu có một quả màu đỏ và một quả màu vàng.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

- Tổng số quả cầu trong túi là: \(4 + 6 + 2 = 12\) (quả)

Do trong hộp có 4 quả cầu đỏ, 6 quả cầu xanh và 2 quả cầu vàng có cùng chất liệu và kích cỡ, khi lấy ngẫu nhiên đồng thời 2 quả cầu trong hộp ta có:

- Số cách lấy hai quả cầu trong túi là: \(12\left( {12 - 1} \right):2 = 66\).

- Số kết quả thuận lợi để lấy được một quả cầu màu đỏ là 4.

- Số kết quả thuận lợi để lấy được một quả cầu màu vàng là 2.

Số kết quả thuận lợi để lấy được hai quả cầu có một quả màu đỏ và một quả màu vàng là: \(4 \cdot 2 = 8\).

Vậy xác suất để lấy được hai quả cầu trong đó có một quả màu đỏ và một quả màu vàng là: \(\frac{8}{{66}} = \frac{4}{{33}}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Cho \[\Delta ABC\] nhọn \(\left( {A (ảnh 1)

a) Chứng minh: \(\Delta ABC = \Delta BAE\).

\(D\) nằm trên đường trung trực của \(AB\) nên \(DA = DB\).

Suy ra \(\Delta DAB\) cân tại \(D\).

Suy ra \(\widehat {DAB} = \widehat {DBA}\) hay \(\widehat {EAB} = \widehat {CBA}\).

Xét \(\Delta ABC\)\(\Delta BAE\) có:

\(AB\) cạnh chung; \(\widehat {EAB} = \widehat {CBA}\) (cmt); \(AE = BC\) (giả thiết)

Vậy \(\Delta ABC = \Delta BAE\) (c.g.c)

b) Chứng minh \(AB\,\parallel \,CE\).

Ta có \(AE = BC\) (giả thiết); \(DA = DB\) (chứng minh trên)

Suy ra \(DA - AE = DB - BC\) nên \(DE = DC\).

Do đó \(\Delta DEC\) cân tại \(D\).

Suy ra \(\widehat {DEC} = \widehat {DAB} = \frac{{180^\circ  - \widehat {ADB}}}{2}\) hay \(\widehat {DEC}\)\(\widehat {DAB}\) ở vị trí đồng vị

Do đó \(AB\,\parallel CE\).

c) Trung trực của cạnh \(AB,\,BE,\,AC\) cùng đi qua một điểm

Gọi \(H\) là giao điểm của trung trực \(AB\) \(AC\).

Suy ra \(HA = HB = HC\).     \(\left( 1 \right)\).

Ta có \(H\) \(D\) nằm trên trung trực của \(AB\) nên \(HD \bot AB\).

\(AB\parallel CE\) nên \(HD \bot CE\).

Mặt khác \(\Delta DEC\) cân tại \(D\) \(HD \bot CE\).

Suy ra \(HD\) là trung trực của \(CE\) hay \(HE = HC\) \(\left( 2 \right)\).

Từ \(\left( 1 \right)\) \(\left( 2 \right)\) suy ra \(HB = HE\) nên \(H\) thuộc trung trực của \(BE\).

Vậy trung trực của \(AB,\,\,\,BE,\,\,\,AC\) cùng đi qua một điểm \(H\).

Lời giải

Cho \[\Delta ABC\] có \[AB = A (ảnh 1)

a) Xét \(\Delta ABM\)\(\Delta DCM\), có:

\[AM = MD\] (gt)

\[\widehat {BMA} = \widehat {CMD}\] (đối đỉnh)

\[BM = MC\] (gt)

Do đó, \(\Delta ABM = \Delta DCM\) (c.g.c)

b) Từ phần a, có \(\Delta ABM = \Delta DCM\) (c.g.c) nên \(\widehat {ABM} = \widehat {DCM}\) (hai góc tương ứng)

Mà hai góc ở vị trí so le trong, suy ra \(AB\parallel DC\).

c) Xét \[\Delta ABC\]\[AB = AC\] nên \[\Delta ABC\] cân tại \[A\].

Mà có \[M\] là trung điểm của \[BC\] nên \[AM\] là đường cao của \[\Delta ABC\].

Suy ra \(AM \bot BC\).

d) Từ a) có \(\Delta ABM = \Delta DCM\) (c.g.c) nên \(AB = DC\) (2 cạnh tương ứng).

\[AB = AC\] nên \[AC = CD\], suy ra \(\Delta CAD\) cân tại \(C\).

Suy ra \(\widehat {ADC} = \widehat {CAD} = 45^\circ \).

\(\widehat {BAC} = 2\widehat {CAD} = 90^\circ \) (\[AM\] vừa là đường cao, vừa là đường phân giác \(\widehat {BAC}\)).

Lúc này \[\Delta ABC\] là tam giác vuông cân tại \[A\].

Vậy để góc \(\widehat {ADC} = 45^\circ \) thì \[\Delta ABC\] là tam giác vuông cân tại \[A\].