Cho điểm \(C\) nằm giữa hai điểm \(A\) và \(B,\) điểm \(I\) là trung điểm của đoạn thẳng \(BC.\) Tính độ dài của đoạn \(AB,\) biết rằng \(AC = 5{\rm{\;cm}}\) và \(CI = 7{\rm{\;cm}}{\rm{.}}\)
Cho điểm \(C\) nằm giữa hai điểm \(A\) và \(B,\) điểm \(I\) là trung điểm của đoạn thẳng \(BC.\) Tính độ dài của đoạn \(AB,\) biết rằng \(AC = 5{\rm{\;cm}}\) và \(CI = 7{\rm{\;cm}}{\rm{.}}\)
Quảng cáo
Trả lời:
![]()
Do \(I\) là trung điểm của đoạn thẳng \(BC\) nên \(BC = 2CI = 2 \cdot 7 = 14\) cm.
Do \(C\) nằm giữa hai điểm \(A\) và \(B\) nên \(AB = AC + CB = 5 + 14 = 19\) cm.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải:
Ta có \[\frac{{2025}}{1} = 2025 = \underbrace {1 + 1 + 1... + 1}_{2025\,\,so\,\,hang}\]
Khi đó:
\(B = \frac{{2025}}{1} + \frac{{2024}}{2} + \frac{{2013}}{3} + \ldots + \frac{1}{{2025}}\)
\( = 1 + \left( {\frac{{2024}}{2} + 1} \right) + \left( {\frac{{2013}}{3} + 1} \right) + \ldots + \left( {\frac{1}{{2025}} + 1} \right)\)
\( = 1 + \frac{{2026}}{2} + \frac{{2026}}{3} + ... + \frac{{2026}}{{2025}}\)
\( = \frac{{2026}}{2} + \frac{{2026}}{3} + ... + \frac{{2026}}{{2025}} + \frac{{2026}}{{2026}}\)
\(B = 2026 \cdot \left( {\frac{1}{2} + \frac{1}{3} + ... + \frac{1}{{2025}} + \frac{1}{{2026}}} \right) = 2026A\)
Ta có \(\frac{B}{A} = \frac{{2026A}}{A} = 2026.\)
Vậy \(\frac{B}{A} = 2026.\)
Lời giải
Hướng dẫn giải
Mỗi bán sẽ nhận được: \(3:4 = \frac{3}{4}\) (cái bánh).
Ta có: \(\frac{3}{4} = \frac{2}{4} + \frac{1}{4} = \frac{1}{2} + \frac{1}{4}\).
Như vậy mỗi bạn sẽ nhận được \(\frac{1}{2}\) cái bánh và \(\frac{1}{4}\) cái bánh.
Ta có cách chia như sau:
- Lần 1 cắt cả 3 bánh, mỗi bánh chia thành 2 phần bằng nhau, chia mỗi người được \(\frac{1}{2}\) cái bánh.
(Người thứ nhất được \(\frac{1}{2}\) cái bánh thứ nhất, người thứ hai được \(\frac{1}{2}\) cái bánh thứ hai. Người thứ ba được \(\frac{1}{2}\) cái bánh thứ ba, người thứ tư được \(\frac{1}{2}\) cái bánh thứ nhất)
Còn \(\frac{1}{2}\) cái bánh thứ hai và \(\frac{1}{2}\) cái bánh thứ ba.
- Lần 2 cắt số bánh còn lại, mỗi phần thành 2 phần bằng nhau, chia mỗi người được \(\frac{1}{4}\) cái bánh.
Theo cách chia trên thì bánh thứ nhất được chia làm 2 phần, bánh thứ hai và thứ ba được chia làm 3 phần thỏa mãn điều kiện đề bài.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.