Vẽ đoạn thẳng \[MN = 6{\rm{\;cm}}{\rm{.}}\] Lấy điểm \[A\] nằm trên đoạn thẳng \[MN\] sao cho \[MA = 4{\rm{\;cm}}{\rm{.}}\]
a) Tính độ dài đoạn thẳng \[AN.\]
b) Lấy điểm \[I\] là trung điểm của đoạn thẳng \[MA.\] So sánh độ dài đoạn \[AI\] và \[AN.\] Điểm \[A\] có là trung điểm của đoạn thẳng \[IN\] không?
Vẽ đoạn thẳng \[MN = 6{\rm{\;cm}}{\rm{.}}\] Lấy điểm \[A\] nằm trên đoạn thẳng \[MN\] sao cho \[MA = 4{\rm{\;cm}}{\rm{.}}\]
a) Tính độ dài đoạn thẳng \[AN.\]
b) Lấy điểm \[I\] là trung điểm của đoạn thẳng \[MA.\] So sánh độ dài đoạn \[AI\] và \[AN.\] Điểm \[A\] có là trung điểm của đoạn thẳng \[IN\] không?
Quảng cáo
Trả lời:

a) Vì điểm \(A\) nằm giữa hai điểm \(M\) và \(N\) nên ta có:
\(MA + AN = MN\)
Suy ra \(AN = MN - MA = 6 - 4 = 2{\rm{\;}}\left( {{\rm{cm}}} \right).\)
b) Vì điểm \[I\] là trung điểm của đoạn thẳng \(MA\) nên điểm \(I\) nằm giũa hai điểm \(M\) và \(A\) và \(IA = \frac{1}{2}MA = \frac{1}{2} \cdot 4 = 2{\rm{\;}}\left( {{\rm{cm}}} \right).\)
Vì điểm \(A\) nằm giữa hai điểm \(M\) và \(N\) nên \(M,\,\,N\) nằm khác phía đối với điểm \(A.\)
Vì điểm \(I\) nằm giũa hai điểm \(M\) và \(A\) nên \(M,\,\,I\) nằm cùng phía đối với điểm \(A.\)
Từ đó ta có điểm \(I\) và \(N\) nằm khác phía đối với điểm \(A.\)
Do đó điểm \(A\) nằm giữa hai điểm \(I,\,\,N.\)
Lại có \(IA = AN = 2{\rm{\;cm}}.\)
Suy ra điểm \(A\) là trung điểm của đoạn thẳng \[IN.\]
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải:
Ta có \[\frac{{2025}}{1} = 2025 = \underbrace {1 + 1 + 1... + 1}_{2025\,\,so\,\,hang}\]
Khi đó:
\(B = \frac{{2025}}{1} + \frac{{2024}}{2} + \frac{{2013}}{3} + \ldots + \frac{1}{{2025}}\)
\( = 1 + \left( {\frac{{2024}}{2} + 1} \right) + \left( {\frac{{2013}}{3} + 1} \right) + \ldots + \left( {\frac{1}{{2025}} + 1} \right)\)
\( = 1 + \frac{{2026}}{2} + \frac{{2026}}{3} + ... + \frac{{2026}}{{2025}}\)
\( = \frac{{2026}}{2} + \frac{{2026}}{3} + ... + \frac{{2026}}{{2025}} + \frac{{2026}}{{2026}}\)
\(B = 2026 \cdot \left( {\frac{1}{2} + \frac{1}{3} + ... + \frac{1}{{2025}} + \frac{1}{{2026}}} \right) = 2026A\)
Ta có \(\frac{B}{A} = \frac{{2026A}}{A} = 2026.\)
Vậy \(\frac{B}{A} = 2026.\)
Lời giải
Hướng dẫn giải
Mỗi bán sẽ nhận được: \(3:4 = \frac{3}{4}\) (cái bánh).
Ta có: \(\frac{3}{4} = \frac{2}{4} + \frac{1}{4} = \frac{1}{2} + \frac{1}{4}\).
Như vậy mỗi bạn sẽ nhận được \(\frac{1}{2}\) cái bánh và \(\frac{1}{4}\) cái bánh.
Ta có cách chia như sau:
- Lần 1 cắt cả 3 bánh, mỗi bánh chia thành 2 phần bằng nhau, chia mỗi người được \(\frac{1}{2}\) cái bánh.
(Người thứ nhất được \(\frac{1}{2}\) cái bánh thứ nhất, người thứ hai được \(\frac{1}{2}\) cái bánh thứ hai. Người thứ ba được \(\frac{1}{2}\) cái bánh thứ ba, người thứ tư được \(\frac{1}{2}\) cái bánh thứ nhất)
Còn \(\frac{1}{2}\) cái bánh thứ hai và \(\frac{1}{2}\) cái bánh thứ ba.
- Lần 2 cắt số bánh còn lại, mỗi phần thành 2 phần bằng nhau, chia mỗi người được \(\frac{1}{4}\) cái bánh.
Theo cách chia trên thì bánh thứ nhất được chia làm 2 phần, bánh thứ hai và thứ ba được chia làm 3 phần thỏa mãn điều kiện đề bài.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.