Câu hỏi:

03/12/2025 6 Lưu

Chứng minh \(A = \frac{1}{{10}} + \frac{1}{{11}} + \frac{1}{{12}} + ... + \frac{1}{{99}} + \frac{1}{{100}} > 1.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải:

Ta có: \(\frac{1}{{10}} > \frac{1}{{20}};\)

\(\frac{1}{{11}} > \frac{1}{{20}};\)

\(\frac{1}{{12}} > \frac{1}{{20}};\)

….

\(\frac{1}{{20}} = \frac{1}{{20}}.\)

Cộng vế theo vế ta được:

\(\frac{1}{{10}} + \frac{1}{{11}} + \frac{1}{{12}} + ... + \frac{1}{{20}} > \frac{1}{{20}} + \frac{1}{{20}} + ... + \frac{1}{{20}} = 10 \cdot \frac{1}{{20}} = \frac{1}{2};\)

Tương tự ta có:

\(\frac{1}{{21}} + \frac{1}{{22}} + \frac{1}{{23}} + ... + \frac{1}{{30}} > \frac{1}{{30}} + \frac{1}{{30}} + ... + \frac{1}{{30}} = 10 \cdot \frac{1}{{30}} = \frac{1}{3};\)

\(\frac{1}{{31}} + \frac{1}{{32}} + \frac{1}{{33}} + ... + \frac{1}{{40}} > \frac{1}{{40}} + \frac{1}{{40}} + ... + \frac{1}{{40}} = 10 \cdot \frac{1}{{40}} = \frac{1}{4}.\)

Suy ra \(\frac{1}{{10}} + \frac{1}{{11}} + \frac{1}{{12}} + ... + \frac{1}{{39}} + \frac{1}{{40}} > \frac{1}{2} + \frac{1}{3} + \frac{1}{4} = \frac{{6 + 4 + 3}}{{12}} = \frac{{13}}{{12}} > 1.\)

Do đó \(A = \frac{1}{{10}} + \frac{1}{{11}} + \frac{1}{{12}} + ... + \frac{1}{{99}} + \frac{1}{{100}} > 1.\)

Vậy \(A = \frac{1}{{10}} + \frac{1}{{11}} + \frac{1}{{12}} + ... + \frac{1}{{99}} + \frac{1}{{100}} > 1.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

c) Với \(n \ne \frac{4}{3},\) đặt \[A = \frac{{3 - 2n}}{{3n - 4}}.\]

Khi đó \[3A = 3 \cdot \frac{{3 - 2n}}{{3n - 4}} = \frac{{9 - 6n}}{{3n - 4}} = \frac{{8 - 6n + 1}}{{3n - 4}} = \frac{{ - 2 \cdot \left( {3n - 4} \right) + 1}}{{3n - 4}} = - 2 - \frac{1}{{3n - 4}}.\]

Với \(n \in \mathbb{Z},\) để \(3A\) có giá trị nguyên thì \(1 \vdots \left( {3n - 4} \right)\)

Hay \(3n - 4 \in \)Ư\(\left( 1 \right) = \left\{ {1;\,\, - 1} \right\}.\)

Ta có bảng sau:

\(3n - 4\)

\(1\)

\( - 1\)

\[n\]

\(\left( {n \in \mathbb{Z}} \right)\)

\(\frac{5}{3}\)

\(1\)

Không thỏa mãn

Thỏa mãn

Thử lại, với \(n = 1\) ta có \[A = \frac{{3 - 2 \cdot 1}}{{3 \cdot 1 - 4}} = \frac{1}{{ - 1}} = - 1 \in \mathbb{Z}.\]

Vậy \(n = 1.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP