Câu hỏi:

03/12/2025 6 Lưu

Tìm các giá trị nguyên của \(n\) để các biểu thức sau có giá trị nguyên:

a) \[\frac{{n - 1}}{{n + 1}}.\]                                    

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải:

a) Với \(n \ne - 1\) ta có: \[\frac{{n - 1}}{{n + 1}} = \frac{{n + 1 - 2}}{{n + 1}} = 1 - \frac{2}{{n + 1}}\]

Với \(n \in \mathbb{Z},\) để biểu thức \[\frac{{n - 1}}{{n + 1}}\] có giá trị nguyên thì \(2 \vdots \left( {n + 1} \right)\)

Hay \(n + 1 \in \)Ư\(\left( 2 \right) = \left\{ {1; - 1;2; - 2} \right\}.\)

Ta có bảng sau:

\(n + 1\)

\(1\)

\( - 1\)

\[2\]

\[ - 2\]

\[n\]

\(\left( {n \in \mathbb{Z}} \right)\)

\(0\)

\( - 2\)

\[1\]

\[ - 3\]

Thỏa mãn

Thỏa mãn

Thỏa mãn

Thỏa mãn

Vậy \(n \in \left\{ { - 3;\,\, - 2;\,\,0;\,\,1} \right\}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(M\) là một điểm thuộc đoạn \[EF.\] Biết rằng \[EF = 10{\rm{\;cm}}\] và \[MF = 5{\rm{\;cm}}.\]Hãy so sánh hai đoạn thẳng \[EM\] và\[MF.\] (ảnh 1)

\(M\) là một điểm thuộc đoạn \[EF,\] nên ba điểm \(E,\,\,M,\,\,F\) thẳng hàng và điểm \(M\)nằm giữa hai điểm \[E,\,\,F.\]

Do đó \(FE = FM + ME\)

Suy ra \(ME = FE - FM = 10 - 5 = 5{\rm{\;}}\left( {{\rm{cm}}} \right){\rm{.}}\)

Vậy \(ME = MF = 5{\rm{\;cm}}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP