Câu hỏi:

03/12/2025 73 Lưu

Cho \(A = \frac{{12n}}{{3n + 3}}\,\,\,\,\,\,\left( {n \in \mathbb{Z}} \right).\)

a) Tìm \(n\) để \(A\) là một phân số.

b) Tìm \(n\) để \(A\) là một số nguyên.

c) Tìm số tự nhiên \(n\) để \(A\) có giá trị nhỏ nhất và giá trị nhỏ nhất đó bằng bao nhiêu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải:

a) Ta có: \(A = \frac{{12n}}{{3n + 3}} = \frac{{12n}}{{3\left( {n + 1} \right)}} = \frac{{4n}}{{n + 1}}.\)

Với \(n \in \mathbb{Z},\) đ\(A\) là phân số thì \(n + 1 \ne 0,\) hay \(n \ne - 1.\)

Vậy với \(n \in \mathbb{Z}\)\(n \ne - 1\) thì \(A\) là phân số.

b) Ta có: \(A = \frac{{12n}}{{3n + 3}} = \frac{{12n}}{{3\left( {n + 1} \right)}} = \frac{{4n}}{{n + 1}} = 4 - \frac{4}{{n + 1}}.\)

Với \(n \in \mathbb{Z},\) đ\(A\) là số nguyên thì \(n + 1 \in \)Ư\(\left( 4 \right) = \left\{ {1;\,\, - 1;\,\,2;\,\, - 2;\,\,4;\,\, - 4} \right\}\)

Ta có bảng sau:

\(n + 1\)

\(1\)

\( - 1\)

\[2\]

\[ - 2\]

\(4\)

\( - 4\)

\[n\]

\(\left( {n \in \mathbb{Z}} \right)\)

\(0\)

\( - 2\)

\(1\)

\( - 3\)

\(3\)

\( - 5\)

Thỏa mãn

Thỏa mãn

Thỏa mãn

Thỏa mãn

Thỏa mãn

Thỏa mãn

Vậy \(n \in \left\{ {0;\,\,\, - 2;\,\,\,1;\,\,\, - 3;\,\,\,3;\,\,\, - 5} \right\}.\)

c) Ta có: \(A = \frac{{12n}}{{3n + 3}} = \frac{{12n}}{{3\left( {n + 1} \right)}} = \frac{{4n}}{{n + 1}}\)

Với mọi số tự nhiên \(n\) ta có \(4n \ge 0;\) \(n + 1 > 0\) nên \(A = \frac{{4n}}{{n + 1}} \ge 0\)

Dấu xảy ra khi và chỉ khi \(n = 0\) (thỏa mãn).

Vậy với \(n = 0\) thì \(A\) đạt giá trị nhỏ nhất là \(0\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải:

Ta có \[\frac{{2025}}{1} = 2025 = \underbrace {1 + 1 + 1... + 1}_{2025\,\,so\,\,hang}\]

Khi đó:

\(B = \frac{{2025}}{1} + \frac{{2024}}{2} + \frac{{2013}}{3} +  \ldots  + \frac{1}{{2025}}\)

\( = 1 + \left( {\frac{{2024}}{2} + 1} \right) + \left( {\frac{{2013}}{3} + 1} \right) +  \ldots  + \left( {\frac{1}{{2025}} + 1} \right)\)

\( = 1 + \frac{{2026}}{2} + \frac{{2026}}{3} + ... + \frac{{2026}}{{2025}}\)

\( = \frac{{2026}}{2} + \frac{{2026}}{3} + ... + \frac{{2026}}{{2025}} + \frac{{2026}}{{2026}}\)

\(B = 2026 \cdot \left( {\frac{1}{2} + \frac{1}{3} + ... + \frac{1}{{2025}} + \frac{1}{{2026}}} \right) = 2026A\)

Ta có \(\frac{B}{A} = \frac{{2026A}}{A} = 2026.\)

Vậy \(\frac{B}{A} = 2026.\)

Lời giải

Hướng dẫn giải

Mỗi bán sẽ nhận được: \(3:4 = \frac{3}{4}\) (cái bánh).

Ta có: \(\frac{3}{4} = \frac{2}{4} + \frac{1}{4} = \frac{1}{2} + \frac{1}{4}\).

Như vậy mỗi bạn sẽ nhận được \(\frac{1}{2}\) cái bánh và \(\frac{1}{4}\) cái bánh.

Ta có cách chia như sau:

- Lần 1 cắt cả 3 bánh, mỗi bánh chia thành 2 phần bằng nhau, chia mỗi người được \(\frac{1}{2}\) cái bánh.

(Người thứ nhất được \(\frac{1}{2}\) cái bánh thứ nhất, người thứ hai được \(\frac{1}{2}\) cái bánh thứ hai. Người thứ ba được \(\frac{1}{2}\) cái bánh thứ ba, người thứ tư được \(\frac{1}{2}\) cái bánh thứ nhất)

Còn \(\frac{1}{2}\) cái bánh thứ hai và \(\frac{1}{2}\) cái bánh thứ ba.

- Lần 2 cắt số bánh còn lại, mỗi phần thành 2 phần bằng nhau, chia mỗi người được \(\frac{1}{4}\) cái bánh.

Theo cách chia trên thì bánh thứ nhất được chia làm 2 phần, bánh thứ hai và thứ ba được chia làm 3 phần thỏa mãn điều kiện đề bài.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP