Câu hỏi:

03/12/2025 8 Lưu

Cho \(A = \frac{{12n}}{{3n + 3}}\,\,\,\,\,\,\left( {n \in \mathbb{Z}} \right).\)

a) Tìm \(n\) để \(A\) là một phân số.

b) Tìm \(n\) để \(A\) là một số nguyên.

c) Tìm số tự nhiên \(n\) để \(A\) có giá trị nhỏ nhất và giá trị nhỏ nhất đó bằng bao nhiêu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải:

a) Ta có: \(A = \frac{{12n}}{{3n + 3}} = \frac{{12n}}{{3\left( {n + 1} \right)}} = \frac{{4n}}{{n + 1}}.\)

Với \(n \in \mathbb{Z},\) đ\(A\) là phân số thì \(n + 1 \ne 0,\) hay \(n \ne - 1.\)

Vậy với \(n \in \mathbb{Z}\)\(n \ne - 1\) thì \(A\) là phân số.

b) Ta có: \(A = \frac{{12n}}{{3n + 3}} = \frac{{12n}}{{3\left( {n + 1} \right)}} = \frac{{4n}}{{n + 1}} = 4 - \frac{4}{{n + 1}}.\)

Với \(n \in \mathbb{Z},\) đ\(A\) là số nguyên thì \(n + 1 \in \)Ư\(\left( 4 \right) = \left\{ {1;\,\, - 1;\,\,2;\,\, - 2;\,\,4;\,\, - 4} \right\}\)

Ta có bảng sau:

\(n + 1\)

\(1\)

\( - 1\)

\[2\]

\[ - 2\]

\(4\)

\( - 4\)

\[n\]

\(\left( {n \in \mathbb{Z}} \right)\)

\(0\)

\( - 2\)

\(1\)

\( - 3\)

\(3\)

\( - 5\)

Thỏa mãn

Thỏa mãn

Thỏa mãn

Thỏa mãn

Thỏa mãn

Thỏa mãn

Vậy \(n \in \left\{ {0;\,\,\, - 2;\,\,\,1;\,\,\, - 3;\,\,\,3;\,\,\, - 5} \right\}.\)

c) Ta có: \(A = \frac{{12n}}{{3n + 3}} = \frac{{12n}}{{3\left( {n + 1} \right)}} = \frac{{4n}}{{n + 1}}\)

Với mọi số tự nhiên \(n\) ta có \(4n \ge 0;\) \(n + 1 > 0\) nên \(A = \frac{{4n}}{{n + 1}} \ge 0\)

Dấu xảy ra khi và chỉ khi \(n = 0\) (thỏa mãn).

Vậy với \(n = 0\) thì \(A\) đạt giá trị nhỏ nhất là \(0\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(M\) là một điểm thuộc đoạn \[EF.\] Biết rằng \[EF = 10{\rm{\;cm}}\] và \[MF = 5{\rm{\;cm}}.\]Hãy so sánh hai đoạn thẳng \[EM\] và\[MF.\] (ảnh 1)

\(M\) là một điểm thuộc đoạn \[EF,\] nên ba điểm \(E,\,\,M,\,\,F\) thẳng hàng và điểm \(M\)nằm giữa hai điểm \[E,\,\,F.\]

Do đó \(FE = FM + ME\)

Suy ra \(ME = FE - FM = 10 - 5 = 5{\rm{\;}}\left( {{\rm{cm}}} \right){\rm{.}}\)

Vậy \(ME = MF = 5{\rm{\;cm}}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP