Tìm các số nguyên \(n\) để các phân số sau tối giản:
a) \[\frac{{n + 13}}{{n - 1}}.\] b) \(\frac{{18n + 3}}{{21n + 7}}.\)
Tìm các số nguyên \(n\) để các phân số sau tối giản:
a) \[\frac{{n + 13}}{{n - 1}}.\] b) \(\frac{{18n + 3}}{{21n + 7}}.\)
Quảng cáo
Trả lời:
Hướng dẫn giải:
a) Với \(n \ne 1,\) ta có \(\frac{{n + 13}}{{n - 1}} = \frac{{n - 1 + 14}}{{n - 1}} = 1 + \frac{{14}}{{n - 1}}.\)
Với \(n \in \mathbb{Z},\) để \[\frac{{n + 13}}{{n - 1}}\] tối giản thì \[\frac{{14}}{{n - 1}}\] phải là tối giản, tức là \[14\] và \(n - 1\) là hai số nguyên tố cùng nhau.
Ngoài các ước là \[1\] và \[14,\] thì \[14\] còn có các ước \[2;\,\,7.\]
Do đó để \(\left( {14,n - 1} \right) = 1\) thì \(n - 1\) không chia hết cho \[2\] và \(n - 1\) không chia hết cho \[7.\]
Tức là \(n - 1 \ne 2k\) (với \(k \in \mathbb{Z})\) và \(n - 1 \ne 7q\) (với \(q \in \mathbb{Z})\)
Vậy với \(n \ne 2k + 1\) và \(n \ne 7q + 1\) \[\left( {k,\,q \in \mathbb{Z}} \right)\] thì \(\frac{{n + 13}}{{n - 1}}\) là phân số tối giản.
b) Giả sử \(d\) là ước chung nguyên tố của \[\left( {18n + 3} \right)\] và \[\left( {21n + 7} \right).\]
Suy ra \(\left\{ \begin{array}{l}\left( {18n + 3} \right) \vdots d\\\left( {21n + 7} \right) \vdots d\end{array} \right.\) nên \(\left\{ \begin{array}{l}7 \cdot \left( {18n + 3} \right) \vdots d\\6 \cdot \left( {21n + 7} \right) \vdots d\end{array} \right.\) hay \(\left\{ \begin{array}{l}\left( {126n + 21} \right) \vdots d\\\left( {126n + 42} \right) \vdots d\end{array} \right.\)
Do đó \(\left( {126n + 42 - 126n - 21} \right) \vdots d\) hay \(21 \vdots d\) nên \(d \in \left\{ {3;7} \right\}.\)
⦁ Với \(d = 3\) ta có \(\left( {21n + 7} \right) \vdots 3\) nên \(7 \vdots 3\) (điều này là vô lí).
⦁ Với \[d = 7\] ta có \[\left( {18n + 3} \right) \vdots 7\] nên \[\left( {18n + 3n - 3n + 3} \right) \vdots 7\] hay \[\left( {21n - 3n + 3} \right) \vdots 7\]
Tức là \[\left( {3 - 3n} \right) \vdots 7\] hay \[3\left( {n - 1} \right) \vdots 7\] nên \(\left( {n - 1} \right) \vdots 7\)
Khi đó \[n - 1 = 7k\] \[\left( {k \in \mathbb{Z},\,\,k \ne 0} \right)\] hay \[n = 7k + 1\] \[\left( {k \in \mathbb{Z},\,\,k \ne 0} \right)\]
Vậy phân số \(\frac{{18n + 3}}{{21n + 7}}\) là tối giản khi \(d \ne 7\) hay \[n \ne 7k + 1\] \[\left( {k \in \mathbb{Z},\,\,k \ne 0} \right).\]
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
![]()
Vì \(M\) là một điểm thuộc đoạn \[EF,\] nên ba điểm \(E,\,\,M,\,\,F\) thẳng hàng và điểm \(M\)nằm giữa hai điểm \[E,\,\,F.\]
Do đó \(FE = FM + ME\)
Suy ra \(ME = FE - FM = 10 - 5 = 5{\rm{\;}}\left( {{\rm{cm}}} \right){\rm{.}}\)
Vậy \(ME = MF = 5{\rm{\;cm}}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



