Tìm các số tự nhiên \(x,\,\,y\) trong mỗi trường hợp sau:
a) \(\frac{1}{x} + \frac{y}{3} = \frac{5}{6}.\)
b) \(\frac{x}{3} - \frac{y}{4} = \frac{1}{5}.\)
Tìm các số tự nhiên \(x,\,\,y\) trong mỗi trường hợp sau:
a) \(\frac{1}{x} + \frac{y}{3} = \frac{5}{6}.\)
b) \(\frac{x}{3} - \frac{y}{4} = \frac{1}{5}.\)
Quảng cáo
Trả lời:
Hướng dẫn giải:
a) Ta có: \(\frac{1}{x} + \frac{y}{3} = \frac{5}{6}\)
\(\frac{1}{x} = \frac{5}{6} - \frac{y}{3}\)
\(\frac{1}{x} = \frac{5}{6} - \frac{{2y}}{6}\)
\(\frac{1}{x} = \frac{{5 - 2y}}{6}\)
Suy ra \(x \cdot \left( {5 - 2y} \right) = 6 \cdot 1 = 6\)
Vì \(x,y\) là số tự nhiên nên \(x \in \)Ư\(\left( 6 \right) = \left\{ {1;\,\,2;\,\,3;\,\,6} \right\}.\)
Ta có bảng sau:
|
\(x\) |
\(1\) |
\(2\) |
\(3\) |
\(6\) |
|
\(5 - 2y\) |
6 |
3 |
2 |
1 |
|
\(y\) \(\left( {y \in \mathbb{N}} \right)\) |
\(\frac{{ - 1}}{2}\) |
1 |
\(\frac{3}{2}\) |
2 |
|
Không thỏa mãn |
Thỏa mãn |
Không thỏa mãn |
Thỏa mãn |
Từ bảng trên ta tìm được cặp \(\left( {x;y} \right) = \left\{ {\left( {2;1} \right),\left( {6;2} \right)} \right\}.\)
b) Ta có: \(\frac{x}{3} - \frac{y}{4} = \frac{1}{5}\)
\[\frac{{20x}}{{60}} - \frac{{15y}}{{60}} = \frac{{12}}{{60}}\]
Suy ra \[20x - 15y = 12\]
\[20x - 12 = 15y\]
\[4\left( {5x - 3} \right) = 15y\,\,\,\,\left( 1 \right)\]
Với \(x,\,\,y \in \mathbb{N}\) ta suy ra \[15y\, \vdots \,4\]
Mà ƯCLN\(\left( {15,4} \right) = 1\) nên \[y\,\, \vdots \,\,4\]
Do đó \[y = 4k\,\,\left( {k \in \mathbb{N},\,\,k \ne 0} \right)\]
Thay \[y = 4k\] vào (1) ta được: \[4\left( {5x - 3} \right) = 60k\]
Suy ra \[5x - 3 = 15k\] nên \[5x = 15k + 3\]
Mà \[5x\, \vdots \,5\] nên \[\left( {15k + 3} \right)\,\, \vdots \,\,5\] (điều này là vô lí)
Vậy không tồn tại các số tự nhiên \(x,\,y\) thỏa mãn \(\frac{x}{3} - \frac{y}{4} = \frac{1}{5}.\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
![]()
Vì \(M\) là một điểm thuộc đoạn \[EF,\] nên ba điểm \(E,\,\,M,\,\,F\) thẳng hàng và điểm \(M\)nằm giữa hai điểm \[E,\,\,F.\]
Do đó \(FE = FM + ME\)
Suy ra \(ME = FE - FM = 10 - 5 = 5{\rm{\;}}\left( {{\rm{cm}}} \right){\rm{.}}\)
Vậy \(ME = MF = 5{\rm{\;cm}}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



