Câu hỏi:

03/12/2025 6 Lưu

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{9 - {x^2}}}{{x - 3}}\;\;{\rm{khi}}\;x < 3\\1 - x\;\;\;\;\;{\rm{khi}}\;x \ge 3\end{array} \right.\). Biết \(\mathop {\lim }\limits_{x \to {3^ - }} f\left( x \right) = a,\mathop {\lim }\limits_{x \to {3^ + }} f\left( x \right) = b\). Tính \({a^2} + {b^2}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(\mathop {\lim }\limits_{x \to {3^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {3^ - }} \frac{{9 - {x^2}}}{{x - 3}} = \mathop {\lim }\limits_{x \to {3^ - }} \frac{{ - \left( {x - 3} \right)\left( {x + 3} \right)}}{{x - 3}} = \mathop {\lim }\limits_{x \to {3^ - }} \left( { - x - 3} \right) =  - 6\).

\(\mathop {\lim }\limits_{x \to {3^ + }} f\left( x \right)\)\( = \mathop {\lim }\limits_{x \to {3^ + }} \left( {1 - x} \right) =  - 2\).

Suy ra \(a =  - 6;b =  - 2\). Vậy \({a^2} + {b^2} = 40\).

Trả lời: 40.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = 1\).

Đúng
Sai

b) \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = 1\).

Đúng
Sai

c) Hàm số \(f\left( x \right)\) gián đoạn tại điểm \(x = 2\).

Đúng
Sai
d) Hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\).
Đúng
Sai

Lời giải

a) \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \left( {{x^2} - x - 1} \right) = 1\).

b) \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \frac{{{x^2} - 3x + 2}}{{x - 2}}\)\( = \mathop {\lim }\limits_{x \to {2^ - }} \frac{{\left( {x - 2} \right)\left( {x - 1} \right)}}{{x - 2}}\)\( = \mathop {\lim }\limits_{x \to {2^ - }} \left( {x - 1} \right) = 1\).

c) Vì \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = f\left( 2 \right)\) nên hàm số liên tục tại điểm \(x = 2\).

d) Với \(x \in \left( { - \infty ;2} \right)\), hàm số \(f\left( x \right) = \frac{{{x^2} - 3x + 2}}{{x - 2}}\) liên tục trên khoảng \(\left( { - \infty ;2} \right)\);

Với \(x \in \left( {2; + \infty } \right)\), hàm số \(f\left( x \right) = {x^2} - x - 1\) liên tục trên khoảng \(\left( {2; + \infty } \right)\).

Theo câu c, hàm số liên tục tại \(x = 2\).

Do đó hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\).

Đáp án: a) Đúng;      b) Đúng;   c) Sai;    d) Đúng.

Câu 2

a) Hàm số \(y = f\left( x \right)\) liên tục tại điểm \({x_0} = 2\).

Đúng
Sai

b) \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \frac{1}{2}\).

Đúng
Sai

c) Hàm số \(y = f\left( x \right) + \sin x\) không liên tục tại điểm \({x_0} = 0\).

Đúng
Sai
d) Hàm số \(y = f\left( x \right)\) liên tục tại điểm \({x_0} = 1\).
Đúng
Sai

Lời giải

a) Với \(x \in \left( {1; + \infty } \right)\), hàm số \(y = \frac{{{x^2} - 3x + 2}}{{{x^2} - 1}}\) liên tục trên \(\left( {1; + \infty } \right)\).

Do đó hàm số \(y = f\left( x \right)\) liên tục tại điểm \({x_0} = 2\).

b) \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} - 3x + 2}}{{{x^2} - 1}}\)\( = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{\left( {x - 2} \right)\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\)\( = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{x - 2}}{{x + 1}} =  - \frac{1}{2}\).

c) Với \(x \in \left( { - \infty ;1} \right)\), hàm số \(f\left( x \right) =  - \frac{x}{2}\) liên tục trên \(\left( { - \infty ;1} \right)\).

Do đó hàm số \(y = f\left( x \right)\)liên tục tại điểm \({x_0} = 0\).

Hàm số \(y = \sin x\) liên tục trên \(\mathbb{R}\) nên hàm số \(y = \sin x\) liên tục tại điểm \({x_0} = 0\).

Do đó hàm số \(y = f\left( x \right) + \sin x\)liên tục tại điểm \({x_0} = 0\).

d) Có \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \left( { - \frac{x}{2}\;\;} \right) =  - \frac{1}{2} = f\left( 1 \right)\).

Vì \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = f\left( 1 \right)\) nên hàm số \(y = f\left( x \right)\) liên tục tại điểm \({x_0} = 1\).

Đáp án: a) Đúng;      b) Sai;   c) Sai;    d) Đúng.

Câu 3

A. \(S = 2\).

B. \(S = \frac{1}{2}\). 
C. \(S = 3\).  
D. \(S = \frac{1}{3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

a) Hàm số mô tả số tiền phí theo thời gian trông giữ là \(f\left( x \right) = \left\{ \begin{array}{l}30\;\;\;\;\;\;\;\;\;\;{\rm{khi}}\;0 < x \le 1\\10 + 20x\;\;{\rm{khi}}\;x > 1\end{array} \right.\).

Đúng
Sai

b) \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = 30\).

Đúng
Sai

c) Một người gửi xe ô tô trong 2,5 giờ thì số tiền phải trả là 55 nghìn đồng.

Đúng
Sai
d) Hàm số \(f\left( x \right)\) liên tục trên khoảng \(\left( {0; + \infty } \right)\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP