Câu hỏi:

04/12/2025 12 Lưu

Cho tứ giác \[ABCD.\] Gọi \[E,{\rm{ }}F,{\rm{ }}I\;\] theo thứ tự là trung điểm của \(AD,\,\,BC,\,\,AC.\) Chứng minh rằng:

a) \[EI\,{\rm{//}}\,CD\]\[IF\,{\rm{//}}\,AB.\]      b) \[EF \le \frac{{AB + CD}}{2}.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Xét \(\Delta ADC\)\(E,\,\,I\) lần lượt là trung điểm của \(AD,\,\,AC\) nên \[EI\] là đường trung bình của \(\Delta ADC.\)

Do đó \(EI\,{\rm{//}}\,CD\)\(EI = \frac{{C{\rm{D}}}}{2}.\)

Xét \(\Delta ABC\)\(I,\,\,F\) lần lượt là trung điểm của \(AC,\,\,BC\) nên \[IF\] là đường trung bình của \(\Delta ABC.\)

Do đó \(IF\,{\rm{//}}\,AB\)\(IF = \frac{{AB}}{2}.\)

Cho tứ giác \[ABCD.\] Gọi \[E,{\rm{ }} (ảnh 1)

b) Trong \(\Delta EIF\) ta có: \(EF \le EI + IF\) (dấu "=" xảy ra khi \[E,\,\,I,\,\,F\] thẳng hàng)

\(EI = \frac{{C{\rm{D}}}}{2};\,\,IF = \frac{{AB}}{2}\) (chứng minh ở câu a)

Do đó \[EF \le \frac{{AB + CD}}{2}.\]

Vậy \[EF \le \frac{{AB + CD}}{2}\] (dấu bằng xảy ra khi \(AB\,{\rm{//}}\,CD).\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Vì \(AD\,{\rm{//}}\,KM\) nên \(\widehat {BAD} = \widehat {BKM}\) (đồng vị).

\(AD\,{\rm{//}}\,EM\) nên \(\widehat {CAD} = \widehat {CEM}\) (đồng vị).

\(AD\) là tia phân giác của \(\widehat {BAC}\) nên \(\widehat {BAD} = \widehat {CAD}.\)

Do đó \(\widehat {BKM} = \widehat {CEM},\) lại có \(\widehat {CEM} = \widehat {AEK}\) nên \(\widehat {BKM} = \widehat {AEK}\) hay \(\widehat {AKE} = \widehat {AEK}.\)

Cho tam giác \(ABC\) có \(AB < AC (ảnh 1)

Tam giác \(AEK\)\(\widehat {AKE} = \widehat {AEK}\) nên là tam giác cân tại \(A.\)

b) Xét \(\Delta ACD\)\(EM\,{\rm{//}}\,AD,\) theo định lí Thalès ta có \(\frac{{AE}}{{EC}} = \frac{{DM}}{{MC}}.\)

\(\Delta AEK\) cân tại \(A\) nên \(AK = AE.\)

Lại có điểm \(M\) là trung điểm của \(BC\) nên \(MB = MC.\)

Do đó \(\frac{{AK}}{{EC}} = \frac{{DM}}{{MB}}.\)

c) Xét \(\Delta BMK\)\(AD\,{\rm{//}}\,KM,\) theo định lí Thalès ta có \(\frac{{DM}}{{BM}} = \frac{{AK}}{{BK}}.\)

Theo câu a, ta có \(\frac{{AK}}{{EC}} = \frac{{DM}}{{MB}}\) nên \(\frac{{AK}}{{EC}} = \frac{{AK}}{{BK}},\) do đó \(EC = BK.\)

Lời giải

Hướng dẫn giải

Hình 1:

Ta có \(MB = AB - AM = 7 - 2 = 5.\)

Tam giác \(ABC\)\(MN\,{\rm{//}}\,AB,\) theo định lí Thalès ta có:

\(\frac{{AM}}{{MB}} = \frac{{AN}}{{NC}}\) hay \(\frac{2}{5} = \frac{x}{6},\) suy ra \(x = \frac{{12}}{5}.\)

Vậy \(x = \frac{{12}}{5}.\)

 

Hình 1

Hình 2:

Ta có: \[EF \bot MN,\,\,NP \bot MN\] nên \[EF\,{\rm{//}}\,NP.\]

\(MP = MF + FP = 5 + 15 = 20.\)

Tam giác \[MNP\]\[EF\,{\rm{//}}\,NP,\] theo định lí Thalès ta có:

\[\frac{{ME}}{{MN}} = \frac{{MF}}{{MP}}\] hay \(\frac{3}{y} = \frac{5}{{20}},\) suy ra \(y = \frac{{3 \cdot 20}}{5} = 12.\)

Vậy \(y = 12.\)

 

Hình 2

Hình 3:

Tam giác \[ABC\]\[M,\,\,N\] lần lượt là trung điểm của \[AB\]\[AC\] nên \[MN\] là đường trung bình của tam giác.

Do đó \[MN = \frac{1}{2}BC = \frac{1}{2} \cdot 15 = 7,5\,\,\left( {{\rm{cm}}} \right).\]

Vậy \[x = 7,5\,\,{\rm{cm}}.\]

 

Hình 3

Hình 4:

Tam giác \[ABC\]\[M,\,\,N\] lần lượt là trung điểm của \[AB\]\[AC\] nên \[MN\] là đường trung bình của tam giác.

Do đó \[MN = \frac{1}{2}BC.\]

Suy ra \[x = BC = 2MN = 2 \cdot 3,5 = 7\left( {{\rm{cm}}} \right).\]

Vậy \(x = 7{\rm{\;cm}}.\)

 

Hình 4

Hình 5:

Xét tam giác \[ABC\]\[AD\] là phân giác trong góc \[\widehat {BAC}\] (do \[\widehat {BAD} = \widehat {CAD}),\] nên \(\frac{{AB}}{{AC}} = \frac{{DB}}{{DC}},\) hay \[\frac{{DB}}{{AB}} = \frac{{DC}}{{AC}}\]

Do đó \[\frac{3}{5} = \frac{{DC}}{{8,5}},\] suy ra \[DC = \frac{{8,5 \cdot 3}}{5} = 5,1.\]

Khi đó \(x = BC = DB + DC = 3 + 5,1 = 8,1.\)

 

Hình 5

Hình 6:

Xét tam giác \[IKJ\]\[IL\] là phân giác trong góc \[\widehat {KIJ}\] (do \(\widehat {KIL} = \widehat {JIL}),\) nên \(\frac{{IK}}{{IJ}} = \frac{{LK}}{{LJ}}\) hay \[\frac{{LK}}{{IK}} = \frac{{LJ}}{{IJ}}\]

Theo tính chất dãy tỉ số bằng nhau ta có:

\[\frac{{LK}}{{6,2}} = \frac{{LJ}}{{8,7}} = \frac{{LK + LJ}}{{6,2 + 8,7}} = \frac{{KJ}}{{14,9}} = \frac{{12,5}}{{14,9}}.\]

Suy ra \[LJ = \frac{{12,5}}{{14,9}} \cdot 8,7 \approx 7,3.\]

 

Hình 6