Đề cương ôn tập giữa kì 2 Toán 8 Cánh diều cấu trúc mới (Tự luận) có đáp án - Phần 2
25 người thi tuần này 4.6 144 lượt thi 11 câu hỏi 45 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Đề thi HOT:
10 Bài tập Các bài toán thực tiễn gắn với việc vận dụng định lí Pythagore (có lời giải)
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
Bộ 5 đề thi cuối kì 1 Toán 8 Kết nối tri thức cấu trúc mới có đáp án - Đề 1
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
20 câu trắc nghiệm Toán 8 Kết nối tri thức Ôn tập chương I (Đúng sai - trả lời ngắn) có đáp án
Bộ 10 đề thi Cuối kì 1 Toán 8 Kết nối tri thức có đáp án - Đề 1
10 Bài tập Bài toán thực tiễn có vận dụng tính chất đường phân giác của tam giác (có lời giải)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Hướng dẫn giải
|
⦁ Hình 1: Ta có \(MB = AB - AM = 7 - 2 = 5.\) Tam giác \(ABC\) có \(MN\,{\rm{//}}\,AB,\) theo định lí Thalès ta có: \(\frac{{AM}}{{MB}} = \frac{{AN}}{{NC}}\) hay \(\frac{2}{5} = \frac{x}{6},\) suy ra \(x = \frac{{12}}{5}.\) Vậy \(x = \frac{{12}}{5}.\) |
Hình 1 |
|
⦁ Hình 2: Ta có: \[EF \bot MN,\,\,NP \bot MN\] nên \[EF\,{\rm{//}}\,NP.\] \(MP = MF + FP = 5 + 15 = 20.\) Tam giác \[MNP\] có \[EF\,{\rm{//}}\,NP,\] theo định lí Thalès ta có: \[\frac{{ME}}{{MN}} = \frac{{MF}}{{MP}}\] hay \(\frac{3}{y} = \frac{5}{{20}},\) suy ra \(y = \frac{{3 \cdot 20}}{5} = 12.\) Vậy \(y = 12.\) |
Hình 2 |
|
⦁ Hình 3: Tam giác \[ABC\] có \[M,\,\,N\] lần lượt là trung điểm của \[AB\] và \[AC\] nên \[MN\] là đường trung bình của tam giác. Do đó \[MN = \frac{1}{2}BC = \frac{1}{2} \cdot 15 = 7,5\,\,\left( {{\rm{cm}}} \right).\] Vậy \[x = 7,5\,\,{\rm{cm}}.\] |
Hình 3 |
|
⦁ Hình 4: Tam giác \[ABC\] có \[M,\,\,N\] lần lượt là trung điểm của \[AB\] và \[AC\] nên \[MN\] là đường trung bình của tam giác. Do đó \[MN = \frac{1}{2}BC.\] Suy ra \[x = BC = 2MN = 2 \cdot 3,5 = 7\left( {{\rm{cm}}} \right).\] Vậy \(x = 7{\rm{\;cm}}.\) |
Hình 4 |
|
⦁ Hình 5: Xét tam giác \[ABC\] có \[AD\] là phân giác trong góc \[\widehat {BAC}\] (do \[\widehat {BAD} = \widehat {CAD}),\] nên \(\frac{{AB}}{{AC}} = \frac{{DB}}{{DC}},\) hay \[\frac{{DB}}{{AB}} = \frac{{DC}}{{AC}}\] Do đó \[\frac{3}{5} = \frac{{DC}}{{8,5}},\] suy ra \[DC = \frac{{8,5 \cdot 3}}{5} = 5,1.\] Khi đó \(x = BC = DB + DC = 3 + 5,1 = 8,1.\) |
Hình 5 |
|
⦁ Hình 6: Xét tam giác \[IKJ\] có \[IL\] là phân giác trong góc \[\widehat {KIJ}\] (do \(\widehat {KIL} = \widehat {JIL}),\) nên \(\frac{{IK}}{{IJ}} = \frac{{LK}}{{LJ}}\) hay \[\frac{{LK}}{{IK}} = \frac{{LJ}}{{IJ}}\] Theo tính chất dãy tỉ số bằng nhau ta có: \[\frac{{LK}}{{6,2}} = \frac{{LJ}}{{8,7}} = \frac{{LK + LJ}}{{6,2 + 8,7}} = \frac{{KJ}}{{14,9}} = \frac{{12,5}}{{14,9}}.\] Suy ra \[LJ = \frac{{12,5}}{{14,9}} \cdot 8,7 \approx 7,3.\] |
Hình 6 |
Lời giải
Hướng dẫn giải
|
a) Xét \(\Delta ABC\) có \(AB \bot AC;\,\,IN \bot AC\) nên \(AB\,{\rm{//}}\,IN.\) Mà \(I\) là trung điểm của \(BC\) nên \(IN\) là đường trung bình của tam giác, do đó \(N\) là trung điểm của \(AC.\) Xét tứ giác \(ADCI\) có: \(N\) là trung điểm của \(ID,\,\,AC\) nên \(ADCI\) là hình bình hành. |
|
Lại có \(IN \bot AC\) hay \(ID \bot AC\) nên hình bình hành \(ADCI\) là hình thoi.\(\)
|
b) Kẻ \(IH\,{\rm{//}}\,BK\,\,\left( {H \in CD} \right),\) mà \(I\) là trung điểm của \(BC,\) nên \(IH\) là đường trung bình của \(\Delta BKC.\) Do đó \(H\) là trung điểm của \(KC\) hay \(KH = HC\,\,\left( 1 \right)\) Xét \[\Delta DIH\] có \(N\) là trung điểm của \[DI\] và \[NK\,{\rm{//}}\,IH\] (do \[BK\,{\rm{//}}\,IH)\] nên \(NK\) là đường trung bình của \[\Delta DIH,\] suy ra \(K\)là trung điểm của \(DH\) hay \(DK = KH\,\,\left( 2 \right)\) |
|
Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) suy ra \(DK = KH = HC.\) Do đó \(\frac{{DK}}{{DC}} = \frac{1}{3}.\)
Lời giải
|
a) Xét \(\Delta ABD\) có \(DM\) là đường phân giác của \[\widehat {ADB}\] nên \[\frac{{DA}}{{DB}} = \frac{{MA}}{{MB}}\] (tính chất đường phân giác trong tam giác). b) Xét \(\Delta ACD\) có \(DN\) là đường phân giác của \[\widehat {ADC}\] nên \[\frac{{DA}}{{DC}} = \frac{{NA}}{{NC}}\] (tính chất đường phân giác trong tam giác). |
|
Mà \[\frac{{DA}}{{DB}} = \frac{{MA}}{{MB}}\] (câu a) và \[DB = DC\] nên \[\frac{{MB}}{{MA}} = \frac{{NC}}{{NA}}.\]
c) Xét \(\Delta ABC\) có: \[\frac{{MB}}{{MA}} = \frac{{NC}}{{NA}}\] (câu b) nên \[MN\,{\rm{//}}\,BC\](định lí Thalès đảo).
Lời giải
|
a) Vì \(AD\,{\rm{//}}\,KM\) nên \(\widehat {BAD} = \widehat {BKM}\) (đồng vị). Vì \(AD\,{\rm{//}}\,EM\) nên \(\widehat {CAD} = \widehat {CEM}\) (đồng vị). Mà \(AD\) là tia phân giác của \(\widehat {BAC}\) nên \(\widehat {BAD} = \widehat {CAD}.\) Do đó \(\widehat {BKM} = \widehat {CEM},\) lại có \(\widehat {CEM} = \widehat {AEK}\) nên \(\widehat {BKM} = \widehat {AEK}\) hay \(\widehat {AKE} = \widehat {AEK}.\) |
|
Tam giác \(AEK\) có \(\widehat {AKE} = \widehat {AEK}\) nên là tam giác cân tại \(A.\)
b) Xét \(\Delta ACD\) có \(EM\,{\rm{//}}\,AD,\) theo định lí Thalès ta có \(\frac{{AE}}{{EC}} = \frac{{DM}}{{MC}}.\)
Mà \(\Delta AEK\) cân tại \(A\) nên \(AK = AE.\)
Lại có điểm \(M\) là trung điểm của \(BC\) nên \(MB = MC.\)
Do đó \(\frac{{AK}}{{EC}} = \frac{{DM}}{{MB}}.\)
c) Xét \(\Delta BMK\) có \(AD\,{\rm{//}}\,KM,\) theo định lí Thalès ta có \(\frac{{DM}}{{BM}} = \frac{{AK}}{{BK}}.\)
Theo câu a, ta có \(\frac{{AK}}{{EC}} = \frac{{DM}}{{MB}}\) nên \(\frac{{AK}}{{EC}} = \frac{{AK}}{{BK}},\) do đó \(EC = BK.\)
Lời giải
|
a) Xét \(\Delta ADC\) có \(E,\,\,I\) lần lượt là trung điểm của \(AD,\,\,AC\) nên \[EI\] là đường trung bình của \(\Delta ADC.\) Do đó \(EI\,{\rm{//}}\,CD\) và \(EI = \frac{{C{\rm{D}}}}{2}.\) Xét \(\Delta ABC\) có \(I,\,\,F\) lần lượt là trung điểm của \(AC,\,\,BC\) nên \[IF\] là đường trung bình của \(\Delta ABC.\) Do đó \(IF\,{\rm{//}}\,AB\) và \(IF = \frac{{AB}}{2}.\) |
|
b) Trong \(\Delta EIF\) ta có: \(EF \le EI + IF\) (dấu "=" xảy ra khi \[E,\,\,I,\,\,F\] thẳng hàng)
Mà \(EI = \frac{{C{\rm{D}}}}{2};\,\,IF = \frac{{AB}}{2}\) (chứng minh ở câu a)
Do đó \[EF \le \frac{{AB + CD}}{2}.\]
Vậy \[EF \le \frac{{AB + CD}}{2}\] (dấu bằng xảy ra khi \(AB\,{\rm{//}}\,CD).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.





![Cho tứ giác \[ABCD.\] Gọi \[E,{\rm{ }} (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/12/33-1764811231.png)


