Cho đường thẳng \(\left( d \right):y = \left( {3 - m} \right)x - m + 5\) với \(m\) là tham số.
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: a) Đúng. b) Sai. c) Sai. d) Đúng.
a) Để hai đường thẳng \(\left( d \right)\) và \(\left( {d'} \right)\) cắt nhau thì \(3 - m \ne 2m\) hay \(m \ne 1\).
Khi \(m = 3\) thì \(\left( d \right):y = \left( {3 - 3} \right)x - 3 + 5\) hay \(\left( d \right):y = 2\). Do đó ý a) đúng.
b) Lúc này đường thẳng \(\left( d \right):y = 2\) không đi qua điểm điểm \(A\left( {0;5} \right)\). Do đó ý b) sai.
c) Với \(m = 5\) thì ta có \(\left( d \right):y = \left( {3 - 5} \right)x - 5 + 5\) hay \(\left( d \right):y = - 2x\).
Vì \(2 \ne - 2\) nên đường thẳng \(\left( d \right)\) không song song với đường thẳng \(y = 2x - 1.\) Do đó ý c) sai.
d) Thay \(y = 5\) vào \(y = - x + 9\), ta được \(5 = - x + 9\), suy ra \(x = 4.\)
Để \(\left( d \right)\) cắt \(y = - x + 9\) tại điểm có tung độ là \(y = 5\) thì \(\left( d \right)\) đi qua điểm có tọa độ \(\left( {4;5} \right)\).
Thay \(x = 4,y = 5\) vào \(\left( d \right):y = \left( {3 - m} \right)x - m + 5\) ta được:
\(5 = \left( {3 - m} \right).4 - m + 5\) hay \(5m = 12\) suy ra \(m = \frac{{12}}{5}.\) Do đó ý d) đúng.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án: −3
Thay tọa độ điểm \(A\left( { - m; - 3} \right)\) khi \( - 2.\left( { - m} \right) + 3 = - 3\) hay \(2m = - 6\) nên \(m = - 3.\)
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: a) Đúng. b) Sai. c) Đúng. d) Đúng.
a) Áp dụng định lí Pythagore vào tam giác \(EDC\) vuông tại \(D\), có:
\(E{C^2} = D{C^2} + D{E^2}\,\)(định lí Pythagore)
\(E{C^2} = {3^2} + {4^2}\,\)
\(EC = \sqrt {{3^2} + {4^2}\,} = 5\,\,\left( {\rm{m}} \right)\)
Do đó, ý a) là đúng.
b) Có \(EB \bot DC,\,\,EB \bot AB\) nên \(CD\parallel AB\).
Do đó, xét tam giác \(EAB\) có: \(\frac{{ED}}{{EB}} = \frac{{EC}}{{EA}}\) (hệ quả của định lí Thalès).
Do đó, ý b) là sai.
c) Có \(\frac{{ED}}{{EB}} = \frac{{EC}}{{EA}}\) hay \(\frac{4}{{72}} = \frac{5}{{EA}}\) nên \(AE = \frac{{72 \cdot 5}}{4} = 90\,\,\left( {\rm{m}} \right)\).
Do đó, ý c) là đúng.
d) Xét tam giác \(AEB\) vuông tại \(D\) có: \(A{E^2} = A{B^2} + B{E^2}\) (định lí Pythagore)
Do đó, \(AB = \sqrt {{{90}^2} - {{72}^2}} = 54\,\,\left( {\rm{m}} \right)\).
Vậy chiều cao \(AB\) của tòa nhà là 54 m.
Do đó, ý d) là đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

