Câu hỏi:

04/12/2025 7 Lưu

Cho hàm số bậc nhất y=3mx+3m+2.

Tìm các giá trị của \[m\] để đồ thị hàm số đã cho là

a) đường thẳng đi qua điểm \[\left( {1;{\rm{ }}3} \right).\]

b) đường thẳng cắt đường thẳng \[y = x--1\] tại một điểm nằm trên trục tung.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

a) Để đường thẳng y=3mx+3m+2 đi qua điểm \[\left( {1;3} \right)\] thì \(x = 1\)\(y = 3\) thỏa mãn hàm số trên.

Do đó ta có: \[3 = \left( {3--m} \right) \cdot 1 + 3m + 2\]\(m \ne 2.\)

3=3m+3m+2

\[2m = - 2\]

\(m = - 1.\)

Vậy \(m = - 1\) thỏa mãn yêu cầu đề bài.

b) Để đường thẳng y=3mx+3m+2 cắt đường thẳng \[y = x--1\] thì \(3 - m \ne 1,\) do đó

Gọi \(A\left( {{x_A};{y_A}} \right)\) là giao điểm của hai đường thẳng.

Để hai đường thẳng trên cắt nhau tại điểm \(A\left( {{x_A};{y_A}} \right)\) nằm trên trục tung thì \({x_A} = 0.\)

Thay \({x_A} = 0\) vào hàm số y=x1 ta được \({y_A} = 0 - 1 = - 1.\)

Thay \({x_A} = 0\)\({y_A} = - 1\) vào hàm số \[y = \left( {3--m} \right)x + 3m + 2\] ta được:

\[ - 1 = \left( {3--m} \right) \cdot 0 + 3m + 2\]

\[ - 1 = 3m + 2\]

\[m = - 1\] (thỏa mãn \(m \ne 2).\)

Vậy \(m = - 1\) thỏa mãn yêu cầu đề bài.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

j) \[\left( {x + 5} \right)\left( {x - 5} \right) - 4 = {\left( {x - 2} \right)^2}\]

\({x^2} - 25 - 4 = {x^2} - 4x + 4\)

\({x^2} - {x^2} + 4x = 4 + 25 + 4\)

\(4x = 33\)

\(x = \frac{{33}}{4}.\)

Vậy phương trình đã cho có nghiệm \(x = \frac{{33}}{4}.\)

Lời giải

Hướng dẫn giải

Xét phương trình \(2\left( {x - 1} \right) - mx = 3\)

 \(2x - 2 - mx = 3\)

 \(\left( {2 - m} \right)x = 5\)

a) Để phương trình đã cho vô nghiệm thì phương trình \(\left( {2 - m} \right)x = 5\) vô nghiệm, hay nó có dạng \(0x = b\) với \(b \ne 0,\) điều này xảy ra khi và chỉ khi \(2 - m = 0,\) hay \(m = 2.\)

b) Để phương trình đã cho vô số nghiệm thì phương trình \(\left( {2 - m} \right)x = 5\) vô số nghiệm, hay nó có dạng \(0x = 0,\) điều này là vô lí.

Vậy không có giá trị nào của \(m\) để phương trình vô số nghiệm.

c) Để phương trình đã cho có nghiệm duy nhất thì phương trình \(\left( {2 - m} \right)x = 5\) có nghiệm duy nhất, hay nó có dạng \(ax = b\) với \(a \ne 0,\) điều này xảy ra khi và chỉ khi \(2 - m \ne 0,\) hay \(m \ne 2.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP