Câu hỏi:

05/12/2025 9 Lưu

Một hộp đựng 4 viên bi xanh, 3 viên bi đỏ và 2 viên bi vàng. Chọn ngẫu nhiên 2 viên bi. Tính xác suất để chọn được 2 viên bi khác màu.

A. \(\frac{{13}}{{18}}\). 

B. \(\frac{5}{{18}}\).  
C. \(\frac{3}{{18}}\).           
D. \(\frac{{11}}{{18}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(A\) là biến cố lấy được 2 viên bi cùng màu.

Khi đó \(P\left( A \right) = \frac{{C_4^2 + C_3^2 + C_2^2}}{{C_9^2}} = \frac{5}{{18}}\).

Suy ra xác suất chọn được 2 viên bi khác màu là \(P\left( {\overline A } \right) = 1 - P\left( A \right) = 1 - \frac{5}{{18}} = \frac{{13}}{{18}}\). Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\frac{2}{5}\).        
B. \(\frac{2}{{45}}\).  
C. \(\frac{{11}}{{15}}\).      
D. \(\frac{7}{{15}}\).

Lời giải

\(A,B\) là hai biến cố độc lập nên \(P\left( {A \cap B} \right) = P\left( A \right) \cdot P\left( B \right)\)\( \Rightarrow P\left( B \right) = \frac{2}{{15}}:\frac{1}{3} = \frac{2}{5}\). Chọn A.

Câu 2

A. \(0,42\).                   
B. \(0,9\).                     
C. \(0,94\).                            
D. \(0,234\).

Lời giải

Gọi \(A\) là biến cố “Người thứ nhất ném trúng rổ”; \(B\) là biến cố “Người thứ hai ném trúng rổ”;

\(C\) là biến cố “Ít nhất một vận động viên ném trúng rổ”.

Khi đó \(C = A \cup B\). Khi đó \(P\left( C \right) = 1 - P\left( {\overline A \overline B } \right) = 1 - P\left( {\overline A } \right) \cdot P\left( {\overline B } \right) = 1 - 0,2 \cdot 0,3 = 0,94\). Chọn C.

Câu 3

A. \(0,18\).                   
B. \(0,3\).                     
C. \(0,1\).                             
D. \(0,28\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP