Câu hỏi:

05/12/2025 32 Lưu

Hai bạn Việt và Nam của lớp 11B cùng tham gia giải bóng bàn nam do nhà trường tổ chức. Hai bạn đó không cùng thuộc một bảng đấu vòng loại và mỗi bảng đấu vòng loại chỉ chọn một người vào vòng chung kết. Xác suất lọt qua vòng loại để vào vòng chung kết của bạn Việt và Nam lần lượt là 0,8 và 0,7.

a) Xác suất để có ít nhất một bạn lọt vào vòng chung kết là 0,56.
Đúng
Sai
b) Xác suất có đúng một trong hai bạn lọt vào vòng chung kết là 0,38.
Đúng
Sai
c) Xác suất để bạn Nam không lọt vào vòng chung kết là 0,3.
Đúng
Sai
d) Xác suất để cả hai bạn lọt vào vòng chung kết là 0,8.
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(A\) là biến cố “Việt lọt vào vòng chung kết”; \(B\) là biến cố “Nam lọt vào vòng chung kết”.

Ta có \(A,B\) là hai biến cố độc lập.

Theo đề ta có \(P\left( A \right) = 0,8;P\left( B \right) = 0,7\). Suy ra \(P\left( {\overline A } \right) = 0,2;P\left( {\overline B } \right) = 0,3\).

a) Gọi \(A \cup B\) là biến cố “Có ít nhất một bạn lọt vào vòng chung kết”.

\(\overline A \overline B \) là biến cố “Cả hai bạn đều không lọt vào vòng chung kết”.

Khi đó \(P\left( {\overline A \overline B } \right) = P\left( {\overline A } \right) \cdot P\left( {\overline B } \right) = 0,2 \cdot 0,3 = 0,06\).

Khi đó \(P\left( {A \cup B} \right) = 1 - P\left( {\overline A \overline B } \right) = 1 - 0,06 = 0,94\).

b) \(A\overline B \cup \overline A B\) là biến cố “Có đúng một bạn lọt vào vòng chung kết”.

Khi đó \[P\left( {A\overline B \cup \overline A B} \right) = P\left( {A\overline B } \right) + P\left( {\overline A B} \right) = P\left( A \right)P\left( {\overline B } \right) + P\left( {\overline A } \right)P\left( B \right) = 0,8 \cdot 0,3 + 0,2 \cdot 0,7 = 0,38\].

c) \(A\overline B \cup \overline A \overline B \) là biến cố “Nam không lọt vào vòng chung kết”.

Khi đó \[P\left( {A\overline B \cup \overline A \overline B } \right) = P\left( {A\overline B } \right) + P\left( {\overline A \overline B } \right)\]\( = P\left( A \right)P\left( {\overline B } \right) + P\left( {\overline A } \right)P\left( {\overline B } \right)\) \( = 0,8 \cdot 0,3 + 0,2 \cdot 0,3 = 0,3\).

d) \(AB\) là biến cố “Cả hai bạn lọt vào chung kết”.

Khi đó \(P\left( {AB} \right) = P\left( A \right)P\left( B \right) = 0,8 \cdot 0,7 = 0,56\).

Đáp án: a) Sai;   b) Đúng;   c) Đúng;   d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(A\) là biến cố “Rút được thẻ ghi số chia hết cho 6”; \(B\) là biến cố “Rút được thẻ ghi số chia hết cho 5”.

Từ 1 đến 25 có 4 số chia hết cho 6. Suy ra \(P\left( A \right) = \frac{4}{{25}} \Rightarrow P\left( {\overline A } \right) = \frac{{21}}{{25}}\).

Từ 1 đến 25 có 5 số chia hết cho 5. Suy ra \(P\left( B \right) = \frac{5}{{25}} = \frac{1}{5} \Rightarrow P\left( {\overline B } \right) = \frac{4}{5}\).

Giả sử Bình thắng ở lần rút thứ n.

Vì các lần rút là độc lập với nhau nên xác suất để Bình thắng ở lần rút thứ n là

\({P_n} = {\left( {\frac{{21}}{{25}}} \right)^n} \cdot {\left( {\frac{4}{5}} \right)^{n - 1}} \cdot \frac{1}{5} = \frac{1}{4} \cdot {\left( {\frac{{84}}{{125}}} \right)^n}\).

Do đó xác suất để Bình thắng là:

\(P = \frac{1}{4} \cdot \frac{{84}}{{125}} + \frac{1}{4} \cdot {\left( {\frac{{84}}{{125}}} \right)^2} + ... + \frac{1}{4} \cdot {\left( {\frac{{84}}{{125}}} \right)^n} + ...\)\( = \frac{1}{4}\left[ {\left( {\frac{{84}}{{125}}} \right) + {{\left( {\frac{{84}}{{125}}} \right)}^2} + ... + {{\left( {\frac{{84}}{{125}}} \right)}^n} + ...} \right]\).

\(\left( {\frac{{84}}{{125}}} \right),{\left( {\frac{{84}}{{125}}} \right)^2},...,{\left( {\frac{{84}}{{125}}} \right)^n},...\) lập thành một cấp số nhân lùi vô hạn với số hạng đầu \(\frac{{84}}{{125}}\) công bội là \(\frac{{84}}{{125}}\) nên \(P = \frac{1}{4} \cdot \frac{{\frac{{84}}{{125}}}}{{1 - \frac{{84}}{{125}}}} = \frac{{21}}{{41}}\).

Suy ra \(a = 21;b = 41 \Rightarrow a + b = 62\).

Trả lời: 62.

Lời giải

Quy ước gene \(A\): hạt gạo đục và gene \(a\): hạt gạo trong.

Ở thế hệ \({F_2}\) có ba kiểu gene \(AA,Aa,aa\) xuất hiện với tỉ lệ 1 : 2 : 1.

Nên tỉ lệ hạt gạo đục so với hạt gạo trong là 3 : 1.

Gọi \({A_1}\) là biến cố “Hạt gạo lấy ra lần thứ nhất là hạt gạo đục”;

\({A_2}\) là biến cố “Hạt gạo lấy ra lần thứ hai là hạt gạo đục”.

Ta có \({A_1};{A_2}\) là hai biến cố độc lập và \(P\left( {{A_1}} \right) = P\left( {{A_2}} \right) = \frac{3}{4}\).

Xác suất của biến cố “Có đúng 1 hạt gạo đục trong 2 hạt gạo được lấy ra” là

\(P\left( {{A_1}\overline {{A_2}} \cup \overline {{A_1}} {A_2}} \right) = P\left( {{A_1}\overline {{A_2}} } \right) + P\left( {\overline {{A_1}} {A_2}} \right) = P\left( {{A_1}} \right)P\left( {\overline {{A_2}} } \right) + P\left( {\overline {{A_1}} } \right)P\left( {{A_2}} \right) = 2 \cdot \frac{3}{4} \cdot \frac{1}{4} = \frac{3}{8}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

a) Có 30 kết quả thuận lợi cho biến cố \(A\).
Đúng
Sai
b) Có 4 kết quả thuận lợi cho biến cố \(B\).
Đúng
Sai
c) Xác suất của biến cố \(A\) bằng \(\frac{1}{6}\).
Đúng
Sai
d) Xác suất để “Ba bút lấy ra từ hộp có ít nhất 1 bút màu xanh” là \(\frac{{29}}{{30}}\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP